1 Задача

Let $\sum_{n\in\mathbb{N}} a_n$ be a convergent series. Is it possible for $\sum_{n\in\mathbb{N}} a_n^{2023}$ to diverge?

Пусть ряд $\sum_{n\in\mathbb{N}}a_n$ является сходящимся. Возможно ли такое, что ряд $\sum_{n\in\mathbb{N}}a_n^{2023}$ расходится?

 $\sum_{n\in\mathbb{N}}a_n$ жинақты қатар берілсін. $\sum_{n\in\mathbb{N}}a_n^{2023}$ қатары жинақсыз болуы мүмкін бе?

Solution. It is possible. Consider the series:

$$\sum_{n \in \mathbb{N}} a_n = b_1 - \frac{1}{2}b_1 - \frac{1}{2}b_1 + b_2 - \frac{1}{2}b_2 - \frac{1}{2}b_2 + \dots + b_n - \frac{1}{2}b_n - \frac{1}{2}b_n + \dots$$

Here, we define $b_n = \frac{1}{2023\sqrt{n}}$ for all $n \in \mathbb{N}$. Clearly, the series is convergent because partial sums of the first 3n terms are equal to 0, i.e., $S_{3n} = 0$ and other sums differ by infinitesimal values. Now notice that:

$$\sum_{n\in\mathbb{N}} a_n^{2023} = b_1^{2023} - \left(\frac{b_1}{2}\right)^{2023} - \left(\frac{b_1}{2}\right)^{2023} + \dots + b_n - \left(\frac{b_n}{2}\right)^{2023} - \left(\frac{b_n}{2}\right)^{2023} + \dots$$

$$= b_1^{2023} \left(1 - \frac{1}{2^{2022}}\right) + b_2^{2023} \left(1 - \frac{1}{2^{2022}}\right) + \dots + b_n^{2023} \left(1 - \frac{1}{2^{2022}}\right) + \dots$$

$$= \left(1 - \frac{1}{2^{2022}}\right) \cdot \left(b_1^{2023} + b_2^{2023} + \dots + b_n^{2023} + \dots\right).$$

Partial sums of the first 3n terms of the new series are equal to

$$\left(1 - \frac{1}{2^{2022}}\right) \cdot \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right).$$

The latter expression tends to infinity, since it is a harmonic series, thus the series $\sum_{n\in\mathbb{N}} a_n^{2023}$ diverges.

Схема оценивания:

- Ответ был угадан (0 баллов)
- Выбран подходящий сходящийся ряд (+4 балла)
- Показано, что выбранный ряд сходится (+1 балл)
- Показано, что ряд $\sum_{n \in \mathbb{N}} a_n^{2023}$ расходится (+5 балл)
- Имеются незначительные арифметические ошибки (-1 балл)

2 задача

Find all natural numbers n such that polynomial $p_n(x) = (x+1)^n - x^n - 1$ is divisible by $x^2 + x + 1$

Найдите все натуральные числа n такое, что полином $p_n(x) = (x+1)^n - x^n - 1$ делится на $x^2 + x + 1$

 $p_n(x) = (x+1)^n - x^n - 1$ полиномы $x^2 + x + 1$ полиномына бөлінетін барлық n натурал сандарын табыңыз

Критерий оценивания:

Не правильный подход

За нахождение двух таких n +1 балл

За нахождение более двух таких n и ответ без доказательства +2 балла

Правильный подход

За нахождение комплексных корней полинома $x^2 + x + 1$ и +3 балла рассмотрение этих корней в полиноме $p_n(x)$

За решение системы (1) +4 балла

За проверку, что второй корень $x^2 + x + 1$ в полиноме $p_n(x)$ +3 балла приводится обратно к системе (1)

За арифметические неточности (в зависимости от серезности) -1 балл

Solution. Lets find roots of the polynomial $x^2 + x + 1$: roots are $x_1 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$ and $x_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. So, polynomial $p_n(x)$ is devisible by $x^2 + x + 1$ iff $p_n(x)$ has roots x_1 and x_2 . Lets find n such that $p_n(x_1) = 0$:

$$p_n(x_1) = \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i + 1\right)^n - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^n - 1 = \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^n - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^n - 1 =$$

$$= \left(\cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3})\right)^n - \left(\cos(-\frac{2\pi}{3}) + i\sin(-\frac{2\pi}{3})\right)^n - 1 =$$

$$= \cos(-\frac{n\pi}{3}) + i\sin(-\frac{n\pi}{3}) - \cos(-\frac{2n\pi}{3}) - i\sin(-\frac{2n\pi}{3}) - 1 =$$

$$= -2\sin(-\frac{n\pi}{2}) \cdot \sin(\frac{n\pi}{6}) + i \cdot 2 \cdot \sin(\frac{n\pi}{6}) \cdot \cos(-\frac{n\pi}{2}) - 1 = 0$$

The last equation is equivalent to the following system

(1)
$$\begin{cases} \sin(\frac{n\pi}{2}) \cdot \sin(\frac{n\pi}{6}) = \frac{1}{2} \\ \sin(\frac{n\pi}{6}) \cdot \cos(\frac{n\pi}{2}) = 0 \end{cases}$$

Solution of the system on naturals is n = 1 + 6k and n = 5 + 6k.

Its remains to check second root. By the same reasoning we can see that the equiation $p_n(x_2) = 0$ is equivalent to the system (1).

Answer is n = 1 + 6k and n = 5 + 6k, where $k \in N \cup \{0\}$.

3 Задача

English:

The function $f:(1;+\infty)\to\mathbb{R}$ is differentiable on its domain. It is known that for all x>1

$$f'(x) = f\left(\frac{x+1}{x-1}\right) + f(x)$$

Also, $\lim_{x\to\infty}\frac{f'(x)}{e^x}=2$. Prove that $f(\sqrt{2}+1)<2^8$.

Функция $f:(1;+\infty) \to \mathbb{R}$ дифференцируема на области определения. Известно, что для всех x > 1

$$f'(x) = f\left(\frac{x+1}{x-1}\right) + f(x)$$

Кроме того, $\lim_{r \to \infty} \frac{f'(x)}{e^x} = 2$. Докажите, что $f(\sqrt{2} + 1) < 2^8$.

Kazakh:

 $f\colon (1;+\infty) o \mathbb{R}\;$ функциясы анықталу облысында дифференциалданады. Барлық x>1γшін

$$f'(x) = f\left(\frac{x+1}{x-1}\right) + f(x)$$

теңдігі орындалатыны белгілі. Сонымен қатар, $\lim_{x\to\infty}\frac{f'(x)}{e^x}=2$. Келесі тұжырымды дәлелдеңіз: $f(\sqrt{2}+1) < 2^8$.

Marking

Main steps:

- 1. Substitution $t = \frac{x+1}{x-1}$ was found (2 points) 2. It was found that $f'\left(\frac{t+1}{t-1}\right) = f'(t)$ (3 points) 3. Equation $f'(x) = Ce^{x+\frac{2}{x-1}}$ was found (6 points)
- 4. Equation $f'(x) = 2e^{x+\frac{2}{x-1}}$ was found (7 points)
- 5. Proof of main statement (10 points)

Additional steps

1. Substitution $x = \sqrt{2} + 1$ to the original equation was made (+2 points)

How to mark

- Check with "Main steps": find until what step did the student write his/her solution, then put the mark of that very step.
- Check with "Additional steps": find what steps did student write? Put corresponding marks for all steps.