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INTRODUCTION 
 
 The relevance of the work.  The theory of inverse problems is one of the most 
frontier techniques in non-destructive control analysis approach that allows to study 
the state of dynamical system without any exploitation termination. However, the lack 
of analytical solutions in mentioned theory depends on primary issue connected with 
inverse problems which is ill-posedness of the proposed algorithms. Due to that fact 
most of numerical investigations also lead to an increase of technical complications in 
terms of perseverance of the solution at desired accuracy level and convergency rate. 
In presented study we investigate layered medium terrain via convective heat and 
moisture transfer analysis with the inverse theory approach that eventually should be 
utilized for ecological state explorations, but not limited only by that area of use as we 
will show further. In fact, the appliance of multi-physical model leads to possibility of 
finding inter-connections among various identification problems. We may identify set 
of parameters, geometrical domain, boundary, or initial conditions with the help of 
inverse theory approach, while presented case study with multilayered domain 
considered as soil demonstrates some typical peculiarities of the suggested 
methodology and it’s both practical relevance and significance. In any environment 
system soil is presented by the multilayered non-homogeneous structure which works 
as an indicator factor of the air pollution and ground water purity level. However, to 
study the deterioration of the air-soil interaction system often requires both 
investigations on site and laboratory experiments that leads to increase of time and 
production cost needed for exploitation. With the help of inverse analysis 
methodologies, we strive to save both types of resources increasing the precision of 
received results. Although the theory of inverse problems is undergoing rapid 
development in both numerical and analytical exploitations, most of existed methods 
are still requiring comprehensive algorithmic implementations.  
 Accelerated industrial and urban expansion in both developed and developing 
countries leads to an increase in number of contaminated sites and thus the necessity 
of keeping the soil pollution rate under constant monitoring. Since the deterioration 
state of soil structures depends on numerous factors such that porosity level, 
conductibility rate, ground slope, vegetation and various erosions, there is a set of 
parameters that should be controlled through the modeling via multi-physical process 
investigation that is considered in current work.  
 The inverse analysis methodology for multi-physical models leads to possibility 
of determination of cross-related parameters that allow us to determine the current state 
of dynamical system by non-destructive method and keep it under control via constant 
monitoring, that eventually should be automized. Analytical approach allows to 
simplify the suggested algorithms, to derive additional tools useful for analyzing 
complementary non-primary parameters, those which are not terms of the governing 
equation of the model or take implicit form of action. 
 Practical significance. In practice it is of high importance to be able to operate 
with highly trusted data, having precise measurements of parameters for exploration of 
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any dynamical system. Small error in measurement may lead to disastrous 
circumstances during the control stage of considered domain. We may consider the 
design stage of artificial structure or the soil state exploitation, however in both cases 
there is a necessity to operate with some metrological techniques and involve the 
measurement of a priory data, which highly affect our posterior judgments over the 
estimation. Lack of stabilization factors in most cases leads to unpredictable results 
while implying the inverse analysis methodology. Therefore, analytical investigations 
should be a useful mathematical apparatus for estimation of key physical parameters 
and in some cases even fields itself. In almost all cases inverse problems are ill posed 
problems and numerical investigations lead to complications related to dealing with 
regularization or strict stability criteria conditions. At the same time the destructive 
control investigations usually leading to termination of exploitation of the considered 
process in dynamical system is not preferable by most industries. Sampling of the 
ground measurements in terms of environmental hazardous circumstances should not 
be neglected too. In such perspectives suggested methodology of non-destructive 
control identification acts as useful expertise tool. 
 Thesis objective. The primary goal of presented dissertation thesis is to design 
an analytical approach for inverse analysis methodology utilized for exploitation of 
multilayered medium terrain state by identifying key physical parameters of the 
considered dynamical system. Such system may be modeled as multilayered soil or 
key plate structural elements of artificial structures. The methodology designed should 
be universal regardless of the appliance area, weather it is an environmental or 
industrial dynamical system and bring new prospective in the study of inverse problems 
theory applications.   
 Dissertation work novelty.   Suggested state of the art methodology unifies 
sampled postulates of the theory of inverse problems, operational and variational 
calculus, selected elements of functional analysis and dimensionality reduction 
techniques seeking for analytical expressions by observing derived integral relations 
from the posed general equations that describe multi-physical processes key parameters 
set identification. Most of inverse theory approaches imply numerical algorithms that 
give only prescribed error-tolerance as the resulting terms. At the same time existing 
algorithms mostly deal with one-dimensional cases due to the complexity of posed 
strict stability conditions or regularization parameters. Although there are useful 
numerical exploitations that provide smoothed numerical results, in most cases there is 
an immense demand in such resources as computational cost and time for such 
algorithms. 

Presented methodology allows to reduce three-dimensional case to one 
dimensional preserving the properties of initial state and give opportunity to expand 
the area of its application to more than conductivity phenomena, for instance elasticity 
analysis or vibration theory and electromagnetism by studying quasi-linearized 
analogues of original problems. The problem of parameters and domain identifications 
are studied, however the posed functionals may be applied for boundary conditions 
identification as well with minor alterations. Posed coefficients matrixes of derived 
systems of linear equations play special role as fertile foundation for further theoretical 
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investigations as well as the received analytical expressions in frequency and time-
dependent domains. Utilization of the spectral analysis exploitations of posed operators 
has high potential relation to compactness properties investigations of the operator 
theory. 

Personal contributions of doctoral student. Design of computational 
algorithm for the derived analytical expression and software construction, writing and 
publishing research papers in international reviewed scientific journals with impact 
factor included in both Scopus and JCR databases, participation in popular-science 
faculty seminars and international scientific-practical conference.   

Approbation of results. The dissertation work results were reported on: 
- Popular-science seminars of Faculty – School of Applied Mathematics at 

Kazakh-British Technical University. 
- Semestrial research work of doctoral students reporting meetings. 
- Materials of VIII international scientific-practical conference: «Science 

and education in the modern world: challenges of the xxi century» - 2021, April. 
- Published research article in first quartile journal according to Journal 

Citation Report and 96 Journal Impact Factor percentile according to Science Citation 
Index Expanded following up to date JCR issue. 

- Published research article in first quartile journal according to Journal 
Citation Report and 79 Journal Impact Factor percentile according to Science Citation 
Index Expanded following up to date JCR issue. 

- Experimental case study comparison with computational algorithm results 
derived by analytical investigations for conductivity posed problem. 

- Research internship collaboration at Polytechnic University of Milan, 
department of mathematics, Milan, Italy. 

Provisions submitted for defense. 
1. Derived analytical expressions and designed computational algorithm for 

inverse problem of multi-physical processes of thermoelastic deformation 
and heat and moisture transfer. 

2. Expanded designed methodology towards quasi-linearized dimensional 
reduction of thermoelastic stress analysis model along with the exact 
expressions of mathematical model explorations. 

3. Discovered properties of the transformed operators in the frequency domain 
in terms of the nulls identification of characteristic polynomials around 
attenuation parameter and further construction of transformation 
decomposition for construction of transcendental equations.  

 Dissertation work structure. The presented thesis consists of 104 pages, 27 
figures, 4 tables, introduction, three main parts, conclusion, references and 3 
appendixes. 

In the first part there is a description of main postulates, formulations of the 
inverse problems theory and literature review of the existed investigations on discussed 
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topic along with discussed peculiarities of posed models investigated in presented 
work. 

The second part of presented thesis provides general mathematical formulation 
of the posed problem, main derivations, and proofs along with the algorithm 
description and some aspects of the analytical expressions and posed experimental 
measurements for the practical part. 
 The core of the thesis is located in the third part of the work and intended to 
give general overview of the obtained results and their analysis for variety of the posed 
models. 



9 
 

1 INVERSE ANALYSIS METHODOLOGY APPLIED FOR 
EQUATIONS OF MATHEMATICAL PHYSICS GENERAL OVERVIEW 

 
This chapter presents general overview of the methodology for inverse theory 

problems applied for the partial differential equations, it contains main peculiarities, 
some historical overview of existed approaches along with the previous theoretical 
investigations. It also describes variations of the posed models with discussions over 
advances for each of them. 

 
1.1 The development of the theory of inverse problems methodology 
Although the basis mathematical formulation of the inverse problems theory was 

firstly introduced in the second quarter of the XX century by Soviet-Armenian 
physicist Viktor Ambarzumian [1] during his examination of the inverse Sturm-
Liouville problem for determination of the vibration string equation, most of the 
implementations of the theory were conducted intuitively throughout the history of the 
humankind. The conceptual idea of the inverse problem theory lies in inversion of the 
cause-and-effect relationships. Initially, we should describe the idea of the direct 
problem, when for obtained set of input parameters, well-defined geometrical 
characteristics and continuously posed initial-boundary conditions we aiming to 
determine the field or some other quantity of interest via sequentially received solution 
or numerical algorithm. In this case from the given causes, we determine their effects 
over investigated domain and the relationship is direct in such case. Whereas in the 
case of the inverse problems, we are determining the causes by observing the effects 
that they are producing. Therefore, we may declare that such analogues of the inversely 
posed problem were always processed by individuals who were aiming to determine 
the reasons for observable phenomena at some point. For instance, around 375 BC the 
Greek philosopher Plato in his work Republic described a famous allegory of the cave 
[2], where people were reconstructing an image of the object by observing its shadows 
on the cage’s wall, this is a typical example of the inverse problem. Another ancient 
philosophical epistemology that produced a great usage of the inverse analysis 
methodology was presented by Aristotle’s arguments for the sphericity of the earth [3], 
where he provided evidence both theoretical and empirical. One of the arguments was 
made by observing the segments of the shape of the moon’s eclipse, stating that it 
always preserves a convex form. Another fruitful proposition Aristotle derived by 
observing the night sky, stating that by changing position on Earth surface, some 
spectator will discover different allocations of stars, that is not possible in a planar 
shape case. More advanced philosophical formulations of the inverse theory problems 
were enriched by Immanuel Kant in his Critique of pure reason transcendental 
psychology revising epistemology and metaphysics of a priory conditions of the human 
cognition [4].  Such formulations gave basis for defining the nonlinear connections 
between posterior epistemology and preliminary estimations over the studied object or 
process, which lied in the foundation of inverse problem classical formulation. Such 
formulation always operates with additionally given data, that is a priory epistemology, 
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and that is the key element which is necessary for obtaining solution of the inverse 
problem, which itself is a posterior estimation over investigated matter. From 
engineering perspectives, first general contributions to the study of the theory of 
inverse problems were done by mathematician and physicist John William Strutt [5], 
when he was making experiments with string vibrations and by the frequency of its 
oscillations determined the strength and other elastic parameters of that string 
performing purely inverse analysis methodology. Around the same time Konrad 
Schlumberger performed his experimental resistance method, when by electric 
propulsion injected through the soil medium, he measured an electric potential of the 
ground [6]. These illustrative examples represent how throughout the development of 
technological stage, the theory of inverse problems was undergoing dynamical and 
rapid historical evolution. Depending on the increase in necessities of engineering 
industries different classes of the inverse theory appeared. The inverse coefficients 
problems are setting in order to determine the coefficients involved either in governing 
equations or initial-boundary conditions for considered process. Other classes of 
inverse problems like identification problems are dealing with the domain 
reconstruction by determining the geometrical properties of considered boundaries. In 
some cases, it is possible to identify the boundary condition itself and by solving the 
retrospective inverse problem we may obtain initial conditions of considered 
dynamical system.  

Principal property of mostly all inverse problems is the ill-posedness due to 
sensitivity of obtained solution regarding the input parameters. Initially introduced by 
Hadamard [7] in the beginning of the XX century notion of well-posedness for 
mathematical models describing physical phenomena, requires existence and 
uniqueness of the solutions along with continuous dependence on the data, - the former 
requirement closely connected to stability concept. In case of inverse problems all three 
criteria could be violated. However, for most cases the inverse problems require 
regularization procedure in order to overcome the third criterion. Various approaches 
appeared throughout the evolutionary development of the inverse problems. For 
instance, the automatic selection of regularization parameter in Tikhonov 
regularization, based on the generalized cross-validation method [8] and appear to be 
a numerical optimization algorithm. Meanwhile the convergence issues near the global 
minimum are addressed by the changing the variables in optimization problem or 
modifying the least-square problem. However, the obtained estimates effectiveness is 
typically presented by conducted numerical experiments and this is another feature of 
inverse problem evaluation procedure.  In recent times, different modern methods have 
been developed to solve inverse transfer problems, such as heuristic search method [9], 
neural network-based method [10], and dynamic Bayesian network method [11].  The 
numerical computations, even though it may be quite efficient for determination of 
inverse problems key goals, are not supplying us with functional relationship between 
characteristics and effects of influencing factors and the time for analytical 
computations in most cases is rather short. However, the analytical estimators require 
simplified geometrical configurations and should be explicit as was revealed in [12].  
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Some additional methods to deal with the irregularities were actively 
investigated in recent time. One of such examples is the machine learning based 
approach for inverse identification of heat flux demonstrated in [13], where authors 
presented an efficient and robust inverse approach to obtain the heat flux distribution 
on the tool rake face in a case of oblique cutting, which was including the tool nose 
radius investigations, studying the dependency of the proposed algorithm on the 
number of input data, the optimization strategy sampling, and the general performance 
of the selected ML-based approach. Another example is an inverse estimation of 
boundary heat flux using particle swarm optimization method is described in [14], 
where authors apply different Artificial Neural Network models to facilitate faster 
computations and perform the Particle Swarm Optimization combined Bayesian 
framework to quantify modeling error. At the same time, good example of empirical 
data utilization could be found in [15], where authors present a study of inverse natural 
convection-conduction heat transfer for in-line tube heat exchanger in a hot box with 
experimental data, stating that the accuracy of the chosen flow model as well as the 
near-wall treatment requires detailed experimental verification, since it can affect the 
accuracy of the numerical results obtained. Thus, authors conclude that the selection 
of an appropriate flow model is important. There are also some Bayesian models used 
to solve a two-dimensional inverse heat transfer problem of gas turbine discs described 
in [16]. Authors state that Bayesian method could be built to calculate heat transfer on 
both the upstream and downstream surfaces of discs from simulated temperature 
measurements, reducing the ill-posedness of the inverse problem. In such case, the 
accuracy of the Bayesian method depends on the sampling of the standard deviation in 
the prior distribution, and according to findings, the best accuracy is obtained when it 
is twice the maximum of posed Biot number. Solution of an inverse heat conduction 
problem with third-type boundary conditions well reflected by [17], where the authors 
developed an algorithm to solve inverse conduction problems by matrix inversion. The 
posed algorithm was applied to a slab with Robin boundary conditions on one wall, in 
a case when the tests were conducted for both simulated and experimental temperature 
distributions. Overall, authors verified that the algorithm is indeed accurate and tolerant 
of noise when the sampled data are adequately filtered. Some inaccuracies in the 
inverse heat conduction problem solution and their effect on the estimation of heat 
fluxes were described in [18], where the authors demonstrated that there are 
unavoidable issues that inherent to quenching experiments that may lead to significant 
overestimation of the surface temperature in the initial instants of the experiment, 
stating that is undesirable to relate the surface temperature estimation with boiling 
regime at initial conditions. Inverse analysis of mould-casting interfacial heat transfer 
towards improved castings could be found in [19], where the authors present a correct 
information about the interfacial heat transfer coefficient (IHTC) at the mould-casting 
interface, while the quality of caste materials is crucially dependent on the rate of 
change of heat transfer across the mould-casting interface during the process of 
solidification and cooling of the investigated casting materials. In some cases, the 
utilization of the special function is applied, like the Trefftz numerical functions used 
for solving inverse heat conduction problems, that are widely discussed in [20]. 
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Authors present a concept of solving the inverse heat conduction problem with the 
utilization of a linear combination of functions that satisfy the differential equation in 
terms of identity property. It was proved that sampled Trefftz functions construct a 
complete system of functions necessary to develop the solution to the heat conduction 
equation. However, in a case of radiative heat transfer the governing equation is ill-
conditioned and requires a special technique called regularization to make it amenable 
to stable numerical solution. For instance, some well-known techniques, such as 
Tikhonov regularization, and truncated singular value decomposition are discussed for 
such inverse problem in [21], where the authors discuss the results on methods based 
on metaheuristics, namely simulated annealing as well as some machine learning 
techniques based on neural networks. Ther are also discussion over numerical and 
experimental verification of the single neural adaptive technology with real-time 
inverse method for solving inverse heat conduction problems in the study [22], where 
authors show that the derived algorithm has stronger anti-interference ability and 
adaptability, based on ingenious experimental platform that was designed. In 
mentioned study, authors estimate unsteady boundary heat flux of one-dimensional 
heat conduction problem via the numerical and experimental tests, which verifies the 
effectiveness of the proposed inverse method. At the same time, in [23] authors discuss 
the forward problem data, interpolating functions that are developed to relate source 
heat input and location to temperature samples on the wall, downstream of the source. 
Advancing the posed problem, by posing the prediction of 3D natural convection heat 
transfer characteristics in a shallow enclosure with experimental data, authors discuss 
suitable flow model in [24], stating that obtained estimates are consistent with the 
existing correlation. It was also observed that thermocouple response time affects the 
heat flux estimates with inverse methods in [25], where authors proposed new 
correction method for applications with fast cooling or heating by using simplified 
model and a calibration test to estimate the response time, evaluating the effects of the 
thermocouple noise, data filtering and heat loss. In some cases, for stable sequential 
solution of inverse heat conduction problem, the optimal hybrid parameter sampling 
could be applied. For instance, the proposed ridge estimator in [26], which is based on 
the sum of the bias and variance errors of the heat flux, where authors derived new 
stability condition for sampling the governing coefficient by separate control of the 
stability of input and initial errors data in order to deal with the ill-posed nature of the 
inverse heat conduction problem. There were also successful examples of using exact 
solution of the heat conduction equation, presented in [27], when authors were 
investigating the surface heat flux in planar water-jet cooling of moving hot solid and 
obtained the heat flux profile of thin plate along with the high spatial resolution. It also 
correlates with the implementation of the Fourier’s inverse problem when it could be 
supervised by the optimization problem for determination of the thermal diffusivity 
[28] by minimizing the residual function between the model predictions and the 
experimentally sampled data. Another study presents a novel approach for solving 
inverse heat conduction problems in case of one-dimensional domain by considering 
the moving boundary and temperature dependent material properties, where authors 
described in [29] two thermocouples that were used to measure temperature at two 
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interior locations inside the considered medium while the front boundary used to 
experience a recession process, that is moving towards the back surface. They have 
concluded that the developed method can be applied for calculating the surface heat 
flux in applications that involve case with moving boundary and large temperature 
variations such as the ablative thermal protection system. The local heat transfer 
investigation could be also utilized for characterization of thermal behavior of a micro 
pulsating heat pipe as was shown in [30], where authors described the temperature 
distribution of condenser by measuring data using the infrared camera and by solving 
the inverse heat conduction problem estimated the local heat flux discussing the 
variations of input data. While modulating heat transfer characteristics, it could be 
shown that some effect of rotating fluid with Taylor column phenomenon may occur, 
as was discussed in [31], where researchers presented a comparative study made 
between low Reynolds number heat transfer and steady high Reynolds number heat 
transfer revealing a broad perspective into the flow-physics of the problem. At the same 
time, there are cases when the inverse problem approach was used for investigation of 
solid concentration in solid–liquid two-phase flow, like the authors in [32] 
demonstrated for the case with horizontal pipeline, using the correction method for 
estimations based on forward problem error and estimating the solid concentration rate. 
Meanwhile the another aspects of inverse problem posedness, like the impulse response 
methods can be used to quantify the surface heat flux in multi-layer materials as was 
described in [33], where authors presented results over case study for components in 
which there are limited subsurface (internal) temperature measurements providing a 
foundation for deducing the heat flux estimators from a subsurface heat flux sensor, 
maintaining a high-frequency response. The non-iterative inversion of loadings could 
be utilized in case of isogeometric boundary elements as widely discussed in [34] when 
considering the transient heat transfer problems in cases of inhomogeneous materials. 
The authors investigate application of the implementation of basis function expansion 
and regularization scheme improving the accuracy and noise resistance of boundary 
condition inversion. It also correlates with thermal boundary condition modeling via 
the inversion modeling based on Green's function and regularization method as was 
presented in [35] where authors considered commercial aircrafts, precisely the inner 
wall of aircraft cabin, presenting additionally the model validation through the 
experimentally received data. Regardless of the numerical approach, an analytical 
methods of the inverse problem utilization could be also applied for empirical 
investigations, as was presented in [36], where authors investigated the periodical heat 
transfer problems of multilayer rocks calibrating the thermal energy storage in case of 
underground mines, revealing some crucial aspects of applicability and accuracy of the 
proposed analytical solution and valuable guidance for proper layer sampling. Beside 
that, some topological designs could be also utilized for forced convection heat transfer 
problems, as was presented in [37] by considering the deep generative model or solving 
complex topology optimization problems regarding the laminar and turbulent heat 
transfer problems solutions. Along that, the cooling configurations could be 
determined via the local heat transfer characteristics by experimental approach as 
described in [38], where the authors reveal results over analysis of inverse heat 
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conduction problem by discrete energy balances considering transient heat transfer 
measurements. Meanwhile another methodology such as the element differentiation 
method could be utilized transient heat transfer problems with phase change, as well 
studied in [39] for the phase change case, when the interface nodes and the outer 
boundary nodes were correlated with the flux equilibrium condition that resulted in 
estimator derivation for the validation of the effectiveness and accuracy of proposed 
methodology. Some other variations of the posed problem could be found in [40], 
where authors present a valuable result by considering the mechanism of heat transfer 
in two-layer porous materials with the heat generation stating that the total energy 
balance in system becomes zero according to thermodynamic law. Although, the study 
was conducted by purely numerical approach, authors have revealed some useful 
aspects for the proposed approximation algorithm, such as the sensitivity to the input 
data. Another coefficient identification problem solved by the integral local parameters 
identification coupled with the least squares method was studied in [41], where authors 
determined fluid specific heat capacity and heat transfer coefficient based on multiple-
case joint analysis in heat exchangers proposing a novel methodology and computing 
the relative identification errors. Physically different type of proposed problem in terms 
of circumferentially non-uniform heat flux was investigated over the effect of flow 
boiling heat transfer in a horizontal tube and described in [42], where authors 
determined heat transfer coefficients via an inverse problem model and concluded that 
pressure drop was not affected by the heat flux condition. The heat and mass transfer 
in micropolar nanofluids flow numerically analyzed in [43] by the finite volume 
approach. The authors have revealed that  a high vortex viscosity parameter value 
produces a weak rate of concentration field and has significant behavior in a case when 
thermophoresis parameter. Interesting findings of the heat transfer of single-jet 
impingement cooling may be found in [44], where authors have discussed an 
experimental case study, revealing conditions for obtaining macroscale data of the 
cooling process, while the dissipated heat flux was estimated by solving a 2D inverse 
heat conduction problem. Another application of the eigenfunction-based solution 
could be found in [45], where the authors presented one-dimensional solid-liquid phase 
change heat transfer problems solution with advection considering variety of the 
problem parameters, including Stefan and Peclet numbers, improving the theoretical 
understanding of phase change heat transfer in the presence of advection.  

Another important aspect is the nonlinearity, which also affects the posedness 
procedure of inverse problem methodology. Such an example of investigations may be 
found in [46], where authors propose a surrogate model based with active interval 
densifying method provided for solving the uncertain nonlinear inverse problem. The 
study also presents a numerical experiment with its feasibility, computational accuracy, 
and efficiency level. Alternate research [47] shows the direct and inverse 
reconstruction of the heat flux via the multiresolution formulation with temperature 
measurement devices located over multidimensional solid in hypersonic flow. The 
approach is based on development of quadrature formulas for the convolution product 
construction between special wavelets and Green’s function basing on iso-parametric 
mapping of three-dimensional geometries. Another example is the heat and mass 
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transfer of nanoparticles on mixed convective flow studied along with the impact of 
Richardson number in [48], where authors considered non-Newtonian liquid, revealing 
the existence of the solutions for the critical values of governing parameter. The 
establishment of the heat transfer model of solid rocket motor nozzle expansion section 
based on roughness wall with the help of empirical and numerical computations is 
presented in [49], where researchers demonstrate that the proposed segment method 
gives the error between computed parameter by the proposed heat transfer model and 
numerical experiment is controlled within 21% and 13% in the first and second 
segments respectively, and that he increase of the depth of temperature measuring 
devices in different segments accelerates the corresponding time response. Another 
experimental study on heat transfer performance and pressure drop characteristics is 
discussed by group of scientists in [50], where presented results demonstrated that the 
pressure gradients and friction factors with the standard Shah and Darcy's correlations 
are in good agreement with the local and average heat transfer coefficients. The 
question of the inverse transfer function identification studied for high-frequency 
pressures in [51] by the special pressure generators with different geometric parameters 
for the proposed methodology. The conductance of the multidimensional simulations 
of the heat transfer problem over the rectangular cylinders discussed in [52], where 
authors discussed the relationship between the Nusselt numbers with flow regimes. It 
was revealed that aspect ratios amplify the total heat transfer due to an enlargement in 
the heat transfer surfaces in a case of forced convection around isothermal cylinders. 
Another inverse improvement of the thermal performance was suggested in discussion 
of numerical experiments in [53] performed by authors for the ribbed channel in a case 
of pentagonal geometry with V-shapes. It was derived that the pentagonal V-shape 
geometry of a rib has higher thermal-hydraulic performance along with a slight high 
the pressure loss penalty rate. The analysis of heat transfer at polymer interface during 
over-molding was developed via study of thermoplastic elastomers discussed in [54], 
where authors used an inverse heat conduction problem to derive the time evolution of 
the surface temperature for the inserted and the injected material while computations 
were done by unidirectional scheme with the boundary conditions determined 
empirically.  The singularly perturbed stationary models of heat and mass transfer 
implemented with a nonlinear thermal diffusion coefficient studied for 
multidimensional thermal structures in [55]. The new approach was presented by 
implementation of the asymptotic analysis methods and solving the inverse problem of 
reconstructing the temperature dependences. While the distributed heat transfer 
coefficient was investigated in a case study of CPU cooling in [56], where the authors 
presented optimizing integrated heat spreaders and revealed that the multi-objective 
optimization schemes produced the best overall heat transfer coefficient derivation. 
Another special Darcy Forchheimer flow of hybrid nanofluid was analyzed in heat 
transfer analysis study of a group of researchers in [57], where authors performed the 
analysis for the multiple shape effects over a curved stretching surface by transforming 
the equations into a collection of first-order problems using the shooting method. The 
phase-field methodology for interfacial heat and mass transfer in two-phase flows was 
described in [58] ,where authors demonstrated the computational model and found that 
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two-scalar model is much more accurate for realistic problems with large diffusivity 
ratios numerically predicting the evolution of heat and mass transfer rates. The falling 
film sensible heat transfer in a case of round horizontal tubes was numerically 
simulated in [59], where the authors also compared the local heat transfer coefficient 
distribution with the analytical heat transfer models in order to predict the heat transfer 
performance over horizontal tube surfaces. The study of flash pulse infrared thermal 
wave testing presented in case of three-dimensional ice shape detection was completed 
in [60] with the help of Levenberg-Marquardt (LM) method based on the inverse heat 
transfer problem leading to further discoveries in exploration of effective accurate and 
quantitative identification methodology. Some comprehensive correlation performed 
for the prediction of the heat transfer rates were numerically simulated in [61] for a 
case of a single droplet in dropwise condensation regime in order to determine the 
conduction heat transfer parameter in a sessile droplet geometry for a large range of 
dynamic contact values angle and Biot number parameter. The performance of the mini 
channel heat sinks was enhanced by utilizing the corona winds and investigated 
numerically in [62] via a full-scale three-dimensional model. The authors deduced that 
the electric field creates a vortex which in turn also causes the flow of mixing in the 
vicinity of the heated surface, disturbing the thermal boundary layer, which results in 
consequently increase of the heat transfer rate due to parameters configuration altering. 
Another novel inverse analysis methodology was presented in [63], where authors 
solve inverse identification problem for determination of the temperature-dependent 
thermal conductivity in transient heat conduction problem with the help of element 
differential method combining it with the Levenberg-Marquardt algorithm. Authors 
results show that the proposed method gives good accuracy level, efficiency and 
robustness in identifying the temperature-dependent thermal conductivity dealing with 
non-linearity with the help of special function iteratively optimizing the objective 
function optimizing the unknown thermal parameter. Successful utilization of the 
integral transform could be found in [64] in a case of heat transfer analysis of 
compressible laminar flow regime in a parallel-plates channel geometry for a coupled 
nonlinear mathematical model via the Generalized Integral Transform Technique 
(GITT) that is the hybrid numerical-analytical method. The [65] presents study over 
derivation of an inverse problem solution in a case of vertical plate cooling in air as a  
comparative study, where authors deduced new formula for the Nusselt number via the 
temperature measurement methodological approach. Some classical results are 
modernized by implementing the novel adjustments, such as the fractional Caputo-
Fabrizio derivatives studied in [66], in terms of analysis of heat mass transfer of 
generalized second grade fluid, where authors solve the system of governing equations 
through Laplace transform including in study the effects of chemical reaction, heat 
source and porous media. It could be also observable that turbulent mixed convection 
flows inverse problem can be solved via the surrogate optimization approach, as 
demonstrated in [67] by researchers, where they utilize the space-time Riemannian 
barycentric interpolation and deduce genetic algorithm approach for inverse parameter 
identification showing delivery of good approximations of the optimal solutions within 
less than two minutes. The heat transfer performance of the conjugate heat dissipation 
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effect in high-speed rotating free-disk system of aero-engines was comprehensively 
evaluated in [68], where authors deduced that the heat transfer temperature and Nusselt 
number parameter of the free disk are strongly correlated along with the rotating Mach 
number and rotating Reynolds number parameters values, revealing by the analysis 
that the heat dissipation is a critical factor that affect the accurate determination of the 
heat transfer performance for the turbine disk. Alongside, the carbon nanotubes under 
an electric field heat transfer performance due to natural oil convection was 
investigated in [69], where researchers found useful multiparameter correlation for 
better understanding of the impact of variety of physical coefficients on the heat 
transfer in annular spaces, revealing also that it may help to predict exact values of the 
Nusselt number. The reliability assessment for non-stationary random thermal load was 
analyzed by stochastic heat transfer model via the explicit time-domain method in [70], 
where it was deduced that suggested approach may be extended for general stochastic 
problems governed by various physical laws, and with the help of explicit expressions, 
the statistics of the considered random system responses could be efficiently 
determined. Some benchmark solutions are presented in [71] ,where the authors 
considered the heat and mass transfer model for  nanofluid flow over porous domain 
of cylinder geometry with chemical reaction participation and viscous dissipation 
effects performing a parametric study and deducing that the curvature parameter  value 
directly affects the local skin friction coefficient and velocity value as well. The inverse 
uncertainty quantification problem in transient models solution has correlation with the 
effects of mesh refinement, as was investigated in [72] by a group of researchers, where 
they have revealed that the computed relative absolute error between empirically 
sampled data and code prediction results was critically decreased upon incorporating 
the input parameter uncertainties that were determined with the help of maximum 
likelihood estimate and the maximum a posterior methodologies. Some useful review 
on the heat transfer in a case of asphalt pavements along with urban heat island 
mitigation methods could be found in study [73], where it was demonstrated that 
insulation materials also increase the surface temperature of the asphalt mixture, 
meanwhile in a case when the higher thermal emissivity is available, a lower surface 
temperature could be observed by altering the thermal conductivity parameter value. 
The inverse analysis could be also utilized for determination of temperature 
distribution in cold forging as was shown in [74], where authors demonstrate that it is 
recommended to obtain the proper value of Taylor-Quinney coefficient from an inverse 
procedure since it may vary due to material and processing condition. The coupling of 
the finite difference and Monte-Carlo methods in the direct simulation could be utilized 
for moving impingement heat transfer in a case of three-dimensional rarefied hydrogen 
gas jet as presented in [75], where the researchers deduced the structural parameters 
that satisfy the temperature control requirements in the substrate by determination 
using the proposed comprehensive model revealing the inverse correlation of the 
impingement distance. At the same time, the thermal conductivity dependence on 
temperature, this is inversely proportionally by the linear functions of temperature 
fields are well studied in [76], where the authors examined the free convective flow of 
viscous fluid regime through the heated uniform and perpendicular wavy surface by 
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numerical investigations, revealing the rate of heat transfer, the skin friction 
coefficient, the isotherms and streamlines, while the system of nonlinear partial 
differential equations solved via implementation of the finite difference implicit 
scheme coupled with the Keller-box technique. Overall, the presented above review, 
demonstrates active interest of the utilization of inverse methodological approaches in 
heat transfer problems coupled with various physics in recent times, base on 
combination of classical methods and novel findings in computational and analytical 
investigations on the topic discussed in current work. 
 

1.2 The principal peculiarities of inverse problems formulation 
Practically most of inverse problems are set in opposite to the direct problems 

formulation, which depicts functional transformation of element from space of input 
data to another functional space, i.e.: 

 
𝐴𝐴:𝑄𝑄 → 𝐹𝐹: ∀𝑓𝑓 ∈ 𝐹𝐹, ∃𝑞𝑞 ∈ 𝑄𝑄, 𝐴𝐴𝑞𝑞 = 𝑓𝑓.    (1) 

 
The former notation typically means that by acting via operator 𝐴𝐴 over some 

element 𝑞𝑞 from observable space of input configuration state of considered dynamical 
system, we obtain the field distribution from the functional space 𝐹𝐹, so called model 
response, and such solution should exist, be unique and preserve continuous 
dependence on the initial distribution. However, since in the case of inverse 
methodology we are aimed to determine elements 𝑞𝑞 from received observations 𝑓𝑓, and 
such approach could result in infinitely many solutions or lack of the solution at all, 
while the initial data in such case critically depends on observations, resulting in 
unstable solution, that all depends on whereas the operator 𝐴𝐴 is invertible or not. In 
most cases, we should set up the norm with existing global minimum, depicting the 
variation between observable and predicted responses, i.e.: 

 
𝐽𝐽(𝑞𝑞) = ‖𝐴𝐴𝑞𝑞 − 𝑓𝑓‖2 → 𝑚𝑚𝑚𝑚𝑚𝑚.    (2) 

 
We treat (2) as the functional minimization problem, where 𝐽𝐽(𝑞𝑞) possesses 

several necessary properties that usually allows us to solve the inverse problem for 
identification of the model parameters. Meanwhile, for the regularization reasons, 
some altitude parameter should be also introduced, i.e.: 

 
𝛼𝛼‖𝐽𝐽‖2 + 𝐽𝐽(𝑞𝑞) = 𝑇𝑇𝛼𝛼(𝑞𝑞) → 𝑚𝑚𝑚𝑚𝑚𝑚.    (3) 

 
 For instance, the Tikhonov regularization (3), where the parameter 𝛼𝛼 could be 

sampled empirically or by some autonomous approach. In the case of inverse problem, 
the input data is taken as the observed or measured distribution of considered field or 
the initial approximations or guesses of either Neumann or Robin coefficients, initial 
data functional relationship, or the geometrical characteristics, while the problem is 
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formulated to estimate or determine exact or more precise values for initial 
approximations for such data. In this case, we may encounter several scenarios. The 
first scenario is that the number of data could be more than the number of unknown 
variables and in such case the solution may not exist. In another scenario, the number 
of unknown variables may be above than the number of initial data points, and that 
may lead to the case, when we have infinitely many solutions or again it may not exist. 
In the case, when initial data was sampled with some perturbation, i.e., error due to 
measurement device accuracy, we gain unstable solution due to the crucial dependency 
of inverse problem solution on input parameters.  In the case of analytical approach 
many issues posed by numerical methodology are disappearing.  In (1) an element 𝑞𝑞 
may be regarded as a model and 𝐴𝐴 as the forward map, while 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 is produced 
observable data and the left part as model response to input data 𝑞𝑞. We may convert 
the measurements into our model parameters by inverting the map 𝐴𝐴 as: 

 
𝑞𝑞 = 𝐴𝐴−1𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜.      (4) 

 
 Our observations may not contain enough information and additional data could 
be required, that may come from physical prior information on mutual dependence of 
parameter values. Even if 𝐴𝐴 is considered as being a square matrix, it can have no 
inverse, being rank deficient, so that solution of (4) will be not unique. In such case the 
solution of posed inverse problem will be undetermined. If we will have more 
equations than unknown the solution will be represented by overdetermined system. If 
the noise corrupts obtained observations so that 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 will lie outside the space 𝐹𝐹 of 
possible responses to our model parameters, the solution to (4) may not exist. Another 
comprehensive issue appears when we are aiming to determine several parameters of 
model inputs at the same time, especially of different nature, such as the physical and 
geometrical characteristics of the model. In such case some crucial limitations 
regarding an incompleteness in observable data are limiting this possibility. Meanwhile 
the issues described for the formulation (1) – (4) are considered for single forward map, 
i.e., when the operator acting over field has homogeneous nature, saying that we 
observe single physical process. However, most physical processes are occurring in 
combined nature, for instance, heat and moisture transfer, or the thermoelastic bending, 
where investigated fields are in mutual, often non-linear, dependencies. Since the 
numerical approaches for former formulations will lead to unpredictable complexity, 
analytical investigations play more important role here. By using the functional 
derivation technique, based on considered minimization approach above, the iterative 
algorithm includes construction of the linear metric space that allows us to derive the 
conjugate problem and further obtain necessary computational formulas. Initially, we 
investigate the posed model with our approximated parameter values, sampled for 
initial iteration, then we observe the difference of model response with re-evaluated set 
of parameters: 
 

∆(𝐴𝐴𝑞𝑞) = 𝐴𝐴𝑛𝑛+1𝑞𝑞𝑛𝑛+1 − 𝐴𝐴𝑛𝑛𝑞𝑞𝑛𝑛 = ∆𝑓𝑓 = 𝑓𝑓𝑛𝑛+1 − 𝑓𝑓𝑛𝑛.   (5) 
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 Constructing the self-adjoint operator for ∆𝐴𝐴, we should obtain the conjugate 
problem, which analytical or numerical solution provides us necessary elements for 
derivation of ∆𝑞𝑞. 
 

1.3 The principal peculiarities of considered formulations for direct multi-
physical problems. 

In our work, we were aimed to consider coupled equations of mathematical 
physics and through investigations over analytical solutions derivations, solve an 
inverse problem to obtain model parameters, physical coefficients, and geometrical 
characteristics. For this reason, firstly, we considered posed heat and moisture transfer 
as a model coupled equation of mathematical physics with various formulations of 
boundary conditions: I (Dirichlet), II (Neumann) and III (Robin) types. Afterwards, we 
observed different geometrical formulations of the problem, considering one-
dimensional, two-dimensional, and three-dimensional cases, including non-
homogeneous multilayered structures. Finally, our aspirations were aimed on 
expansion of derived methodology towards different physical fields, analogically 
varying dimensions, boundary conditions and homogeneity of posed structure. We will 
start our explanation by demonstrating general posed problems below that were 
considered in this work and discussing their peculiarities depending on the derived 
methodology. 

As was mentioned above, our initial approach was to consider the convective 
heat and moisture transfer model for homogeneous structure. The approach was to 
model multi-physical process via the coupled system of partial differential equations 
in multi-layered system. For that reason, we have considered the model discussed in 
our main reference [77]. The paper studies N-layered structure with general thickness 
𝐻𝐻, boundary points 𝑧𝑧𝑘𝑘(𝑘𝑘 = 0,𝑁𝑁�����), 𝑧𝑧0 = 0, 𝑧𝑧𝑁𝑁 = 𝐻𝐻 with 𝑘𝑘-th layer considered as the 
interval [𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘],ℎ𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1 considered as the thickness of the layer and the 
governing equation as: 

 

𝜌𝜌(𝑧𝑧)𝑐𝑐𝑝𝑝(𝑧𝑧)𝛾𝛾(𝑧𝑧) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝛼𝛼(𝑧𝑧) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 𝐶𝐶𝑜𝑜(𝑧𝑧) � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜂𝜂(𝑧𝑧) 𝜕𝜕Ω

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜇𝜇(𝑧𝑧) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
��. 

           (6) 
 
 Here we investigate two fields simultaneously. The first one is the non-stationary 
temperature field, 𝑇𝑇(𝑧𝑧, 𝑡𝑡) measured in kelvins, which reflects amount of heat passing 
through the unit volume of considered layer thickness at given instance of time. 
Another major field is the moisture field Ω(𝑧𝑧, 𝑡𝑡), which depicts the moisture level and 
generally depends on the same spatial and time parameters as the temperature field and 
could be measured in specific humidity unit, that is the weight of water vapor per unit 
weight of air or the grams of water vapor per kilogram of air. Other physical properties 
acting in governing equations are 𝜌𝜌(𝑧𝑧) – the soil density, 𝑐𝑐𝑝𝑝(𝑧𝑧) – specific heat capacity 
of soil, 𝛾𝛾(𝑧𝑧) – specific gravity of soil, 𝛼𝛼(𝑧𝑧) – thermal conductivity of soil, 𝜂𝜂(𝑧𝑧) – soil 
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moisture diffusion, 𝜇𝜇(𝑧𝑧) – thermal transfer coefficient of soil, 𝐶𝐶𝑜𝑜(𝑧𝑧) – coefficient of 
convective heat transfer of soil. As could be seen from the definitions of the governing 
coefficients, all of them are depending on spatial parameter, however we should also 
note their dependency on the temperature and moisture fields, that results in nonlinear 
posedness of the considered problem. The structure under consideration may also be 
anisotropic and nonhomogeneous, which provides us with tensor form equation 
posedness, in case if we would consider the three-dimensional real case, i.e., 𝑧𝑧̅ =
[𝑥𝑥𝐼𝐼 , 𝑥𝑥𝐿𝐿] × [𝑦𝑦𝐼𝐼 , 𝑦𝑦𝐿𝐿] × [𝑧𝑧𝐼𝐼 , 𝑧𝑧𝐿𝐿], where {𝑥𝑥, 𝑦𝑦, 𝑧𝑧} being the orthonormal standard basis set 
coordinate system. As for the boundary and initial conditions, our main reference 
studies following open boundaries and continuity conditions for the fluxes between the 
layers represented by the system of equations: 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑇𝑇(𝑧𝑧, 0) = 𝑇𝑇0(𝑧𝑧),Ω(𝑧𝑧, 0) = Ω0(𝑧𝑧),

�𝛼𝛼(𝑧𝑧) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ℎ(𝑇𝑇 − 𝑇𝑇𝑎𝑎)�
𝑘𝑘=0

= 0,

�𝜂𝜂(𝑧𝑧) 𝜕𝜕Ω
𝜕𝜕𝜕𝜕

+ 𝛽𝛽(Ω− Ω𝑎𝑎�
𝑘𝑘=0

= 0,

𝑇𝑇|𝑘𝑘=𝑁𝑁 = 𝑇𝑇𝐻𝐻(𝑡𝑡), Ω|𝑘𝑘=𝑁𝑁 = Ω𝐻𝐻(𝑡𝑡),
�𝛼𝛼(𝑧𝑧𝑘𝑘) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝜕𝜕𝑘𝑘

= �𝜂𝜂(𝑧𝑧) 𝜕𝜕Ω
𝜕𝜕𝜕𝜕

+ 𝜇𝜇(𝑧𝑧) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝑘𝑘

= 0,

[𝑇𝑇]𝜕𝜕𝑘𝑘 = [Ω]𝜕𝜕𝑘𝑘 = 0.

   (7) 

 
 Typical set of conditions with measured temperature and moisture values on the 
outlet of domain and initial conditions chosen as continuous functions, could be also 
sampled via the following approximations: 
 

�
𝑇𝑇(𝑧𝑧, 0) = 1

2
𝑎𝑎𝜕𝜕𝑘𝑘(𝑧𝑧 − 𝑧𝑧𝑘𝑘−1)2 + 1

2
𝑏𝑏𝜕𝜕𝑘𝑘(𝑧𝑧 − 𝑧𝑧𝑘𝑘−1) + 𝑐𝑐𝜕𝜕𝑘𝑘,

Ω(𝑧𝑧, 0) = 1
2
𝑎𝑎Ω𝑘𝑘(𝑧𝑧 − 𝑧𝑧𝑘𝑘−1)2 + 1

2
𝑏𝑏Ω𝑘𝑘(𝑧𝑧 − 𝑧𝑧𝑘𝑘−1)2 + 𝑐𝑐Ω𝑘𝑘.

 (8) 

 
Where the set of coefficients �𝑎𝑎𝜕𝜕𝑘𝑘 , 𝑏𝑏𝜕𝜕𝑘𝑘 , 𝑐𝑐𝜕𝜕𝑘𝑘,𝑎𝑎Ω𝑘𝑘 , 𝑏𝑏Ω𝑘𝑘 , 𝑐𝑐Ω𝑘𝑘� are the subject for determination 
via inverse problem methodological approach, – in such case we would pose the 
retrospective inverse problem, however we may also suggest such approximation for 
the boundary conditions sampled measurements 𝑇𝑇𝐻𝐻(𝑡𝑡) and Ω𝐻𝐻(𝑡𝑡). The analytical 
solution of the posed system (6) – (8) was obtain via the differential matrix Riccati 
equation in the frequency domain. Obviously, we may solve problems of heat and 
moisture transfer separately by introducing the transition functions, consequently 
homogenizing the sampled measurements. For instance, the following direct problem 
with the boundary condition of the third kind, that is the convective heat exchange 
between the surface and the environment, i.e., heating or cooling by the fluid flow 
around the domain, also known as linear homogeneous boundary conditions and the 
same initial conditions as in the system (7): 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛼𝛼 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜔𝜔(𝑧𝑧, 𝑡𝑡).    (9) 
  

𝜔𝜔(𝑧𝑧, 𝑡𝑡) = 𝑃𝑃(𝑧𝑧)𝑄𝑄(𝑡𝑡).    (10) 
 

�𝛼𝛼1
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

+ 𝛽𝛽1[𝑇𝑇 − 𝑇𝑇𝑎𝑎]�
𝑘𝑘=0

+ ℵ1𝑗𝑗1(𝑡𝑡) = 0.   (11) 
 

            �𝛼𝛼2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽2[𝑇𝑇 − 𝑇𝑇𝑎𝑎]�
𝑘𝑘=𝑁𝑁

+ ℵ𝑁𝑁𝑗𝑗𝑁𝑁(𝑡𝑡) = 0.   (12) 
 

Here both the (11) and (12) equations we may consider as the Newton's law or 
the Newton's equation of convection, whereas it is also possible to consider for 
accuracy and thermal slip - the speed of the gas on the surface, together with the Navier-
Stokes system and continuity equations. As could be observed the decomposed source 
𝜔𝜔(𝑧𝑧, 𝑡𝑡) represented by separate functions (10) could be rewritten only in terms of the 
homogenized sampled measurements and in such case non-homogeneous (11) and (12) 
equations we may rewrite using the transition function: 

 
𝑢𝑢(𝑧𝑧, 𝑡𝑡) = 𝑇𝑇(𝑧𝑧, 𝑡𝑡) − 𝜓𝜓(𝑧𝑧, 𝑡𝑡).    (13) 

 
 That will lead us to the homogeneous system: 
 

𝛼𝛼 𝜕𝜕𝜕𝜕(𝜕𝜕,𝜕𝜕)
𝜕𝜕𝜕𝜕

= −ℵ𝑗𝑗(𝑡𝑡).    (14) 
 

⎩
⎪
⎨

⎪
⎧ 𝜓𝜓1(0, 𝑡𝑡) = 𝑇𝑇𝑎𝑎1 ,

𝜓𝜓𝑁𝑁(𝑙𝑙𝑁𝑁 , 𝑡𝑡) = 𝑇𝑇𝑎𝑎2,
𝜓𝜓𝑘𝑘(𝑙𝑙𝑘𝑘, 𝑡𝑡) = 𝜓𝜓𝑘𝑘+1(𝑙𝑙𝑘𝑘+1, 𝑡𝑡),

𝛼𝛼𝑘𝑘
𝜕𝜕𝜕𝜕𝑘𝑘(𝑙𝑙𝑘𝑘,𝜕𝜕)

𝜕𝜕𝜕𝜕
= 𝛼𝛼𝑘𝑘+1

𝜕𝜕𝜕𝜕𝑘𝑘+1(𝑙𝑙𝑘𝑘+𝑡𝑡,𝜕𝜕)
𝜕𝜕𝜕𝜕

.

   (15) 

 
 The advanced peculiarity of such problem formulation is that the analytical 
determination of nonstationary transfer potential fields in multilayer systems could 
obtained using transformations with the Green's function as demonstrated in [78], 
which is determined in accordance with the boundary conditions (15) or without the 
Green’s function as shown in [79] and via the Fourier variables decomposition method. 
In our work we will demonstrate the received solution in frequency domain via Laplace 
direct and inverse transforms and derivation of the inverse problem for coefficients 
determination via the conjugate problem formulation and its analytical solution 
consequential deduction.   
 In our work we have considered several variations of posed boundary conditions 
for system (9) – (12) and their solution. For instance, when we have both sides as 
isolated boundaries, or one of the side open with second boundary being isolated, or 
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the mixed boundary conditions, such as that on one side of our domain we have the 
heat flux, and another side is the open boundary. For the former formulated problem, 
we have sampled empirically received experimental design data. In each case of the 
posed models, it was possible to evaluate certain number of parameters simultaneously 
via the inverse problems methodological approach due to special peculiarities of each 
model that we will discuss in the main part of the presented thesis.  
 Another principal peculiarity that we may distinguish was noted from 
considering the expansion of the designed methodology towards connections with 
various physical fields. For instance, presented in our work thermoelastic heat transfer 
of the three dimensional horizontally bend plate with thickness ℎ. In that case, we 
observed the Sophie Germain equation: 
 

𝜌𝜌ℎ 𝜕𝜕2𝑊𝑊
𝜕𝜕𝜕𝜕2

= −𝐷𝐷∆∆𝑊𝑊 − ∆𝑀𝑀𝜕𝜕 + 𝑞𝑞.   (16) 
 
 Where last term 𝑞𝑞 is load per unit area of plate, 𝑀𝑀𝜕𝜕 is the bending moment, 
induced by the thermal effect, that we will relate via another system of the heat transfer 
posed model, the coefficient 𝐷𝐷 – cylindrical stiffness, related by the expression: 
 

𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)
.     (17) 

 
 Here we also have elasticity parameters: 𝐸𝐸 – the Young’s modulus, 𝜈𝜈 – the 
Poisson coefficient. When the heat is induced through the medium, material of the 
observed domain starts to resist, and internal forces aroused inside the observed domain 
could be summed via the integral expression: 
 

𝑀𝑀𝜕𝜕 = 2𝜇𝜇𝛼𝛼 ∫ 𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑧𝑧𝑧𝑧𝑧𝑧ℎ/2
−ℎ/2 .    (18) 

 
 In the last expression, we obtain another set of elasticity parameters, such as 𝛼𝛼 
– the coefficient of the linear expansion, and 𝜇𝜇 – the Lame’s coefficient, being 
independent of temperature and expressed as: 
 

𝜇𝜇 = 𝐸𝐸
2(1+𝜈𝜈)

.      (19) 

 
 Furthermore, have the temperature field, that depends on three spatial 
parameters, being non-stationary, we pose the following model to relate the stress-
energy dissipation quantities with thermal term by the introduced heat flux 𝜎𝜎 = 𝑘𝑘∇𝑇𝑇: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘∇2𝑇𝑇.      (20) 
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𝑇𝑇|𝜕𝜕=0 = 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕.     (21) 
 

𝑇𝑇|𝛤𝛤 ∝ 𝑡𝑡.      (22) 
 

𝜎𝜎|
𝜕𝜕=−ℎ2

= 𝜎𝜎|
𝜕𝜕=ℎ2

= ℎ𝜔𝜔1,2.   (23) 

 
 Since the posed system (20) – (23) has dimension 𝑅𝑅3, it is necessary to present 
reduction, that we will demonstrate by using the locally one-dimensional splitting 
scheme, reducing multidimensional problem to the sequence of one-dimensional 
equations. Further peculiarities of the discussed above problems will be noted during 
the presented inverse analysis methodology derivation process in the main part of 
current thesis. 
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2 ANALYTICAL EXPRESSIONS DERIVATION TECHNIQUES 
APPLIED FOR INVERSE ANALYSIS OF MATHEMATICAL PHYSICS 
EQUATIONS 
 

Current section presents main postulates formulated for the derivation stages of 
analytical expressions obtained for inverse problems posed for multi-physical 
processes. It also presents discussion on formulation of variations of the posed direct 
models along with their analytical solutions derivation methodologies, experimental 
posed design for sampling the measurements utilized for homogenized models, solved 
in both real and frequency-time dependence, multilayered domain.  
 

2.1 Homogenization of the direct multiphysical mathematical model in both 
real and frequency time domains. 
 The discussed system (6) – (7) from the first part of current thesis postulates with 
relation between two physically governed fields. Due to that reason the homogenized 
solution, presented in [77] suggests introducing the transition functions for both fields 
as: 

 

� 𝜏𝜏
(𝑧𝑧, 𝑡𝑡) = 𝑇𝑇(𝑧𝑧, 𝑡𝑡) − 𝑇𝑇0(𝑧𝑧),

𝜔𝜔(𝑧𝑧, 𝑡𝑡) = Ω(𝑧𝑧, 𝑡𝑡) − Ω0(𝑧𝑧).       (24) 

 
 Which allows us further to utilize the layer stripping method towards the Laplace 
transform of 𝜏𝜏(𝑧𝑧, 𝑡𝑡) and 𝜔𝜔(𝑧𝑧, 𝑡𝑡) and then to obtain the solution to received differential 
matrix Riccati equation. The (24) substitution provides: 
 

�
𝜌𝜌𝑐𝑐𝑝𝑝𝛾𝛾

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐶𝐶𝑜𝑜

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜆𝜆 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝑓𝑓𝜕𝜕 ,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜂𝜂 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜇𝜇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝑓𝑓Ω.

     (25) 

 
 With the following initial-boundary conditions: 
 

�
�𝜆𝜆 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝛼𝛼(𝑇𝑇 − 𝑇𝑇𝑎𝑎)�

𝜕𝜕=0
= 𝜙𝜙𝜕𝜕 , 𝜏𝜏𝜕𝜕=𝐻𝐻 = 𝜏𝜏𝐻𝐻 , 𝜏𝜏𝜕𝜕=0 = 0,

�𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽(𝜔𝜔 − Ω0)�
𝜕𝜕=0

= 𝜙𝜙Ω, 𝜔𝜔𝜕𝜕=𝐻𝐻 = 𝜔𝜔𝐻𝐻, 𝜔𝜔𝜕𝜕=0 = 0.
 (26) 

 
 And the correspondingly posed continuity conditions for the introduced 
functions and their derivatives: 
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�
�𝜆𝜆 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝜕𝜕𝑘𝑘

= [𝜏𝜏]𝜕𝜕𝑘𝑘 = 0,

�𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝑘𝑘

= [𝜔𝜔]𝜕𝜕𝑘𝑘 = 0.
     (27) 

 
 Here the newly introduced expressions refer to coefficients sampled in (8): 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑓𝑓𝜕𝜕 = 𝜆𝜆𝑎𝑎𝜕𝜕 ,
𝑓𝑓Ω = 𝜂𝜂𝑎𝑎Ω + 𝜇𝜇𝑎𝑎𝜕𝜕 ,
𝜙𝜙𝜕𝜕 = −𝜆𝜆𝑏𝑏𝜕𝜕1 − 𝛼𝛼𝑐𝑐𝜕𝜕1 ,
𝜙𝜙Ω = −𝜂𝜂𝑏𝑏Ω1 − 𝛽𝛽𝑐𝑐Ω1,

𝜏𝜏𝐻𝐻 = 𝑇𝑇𝐻𝐻 −
1
2
𝑎𝑎𝜕𝜕𝑁𝑁(𝐻𝐻 − 𝑧𝑧𝑁𝑁−1)2 + 1

2
𝑏𝑏𝜕𝜕𝑁𝑁(𝐻𝐻 − 𝑧𝑧𝑁𝑁−1) + 𝑐𝑐𝜕𝜕𝑁𝑁 ,

𝜔𝜔Ω = Ω𝐻𝐻 −
1
2
𝑎𝑎Ω𝑁𝑁(𝐻𝐻 − 𝑧𝑧𝑁𝑁−1)2 + 1

2
𝑏𝑏Ω𝑁𝑁(𝐻𝐻 − 𝑧𝑧𝑁𝑁−1) + 𝑐𝑐Ω𝑁𝑁 .

  (28) 

 
 Such that 𝑓𝑓𝜕𝜕 and 𝑓𝑓Ω are the piecewise constant functions, while 𝜙𝜙𝜕𝜕, 𝜙𝜙Ω, 𝜏𝜏𝐻𝐻, 𝜔𝜔Ω 
are constants. These assumptions allow us further to transform introduced functions 
𝜏𝜏(𝑧𝑧,𝑝𝑝) and 𝜔𝜔(𝑧𝑧,𝑝𝑝) to the frequency domain, finding their images of the Laplace 
transform: 
 

�
ℒ[𝜏𝜏(𝑧𝑧, 𝑡𝑡)] = ∫ 𝑒𝑒−𝑝𝑝𝜕𝜕𝜏𝜏(𝑧𝑧, 𝑡𝑡)𝑧𝑧𝑡𝑡 = �̃�𝜏(𝑧𝑧,𝑝𝑝)+∞

0 ,

ℒ[𝜔𝜔(𝑧𝑧, 𝑡𝑡)] = ∫ 𝑒𝑒−𝑝𝑝𝜕𝜕𝜔𝜔(𝑧𝑧, 𝑡𝑡)𝑧𝑧𝑡𝑡 = 𝜔𝜔�(𝑧𝑧,𝑝𝑝)+∞
0 .

   (29) 

 
 Where the complex number 𝑝𝑝 = 𝜖𝜖 + 𝑚𝑚𝑖𝑖 is the Laplace transform parameter with 
𝜖𝜖 – attenuation parameter and 𝑖𝑖 – circular time frequency. Introducing the following 
matrix notations: 
 

⎩
⎪
⎨

⎪
⎧ 𝑈𝑈 = � �̃�𝜏𝜔𝜔�� ,𝐴𝐴 = �𝜆𝜆 0

𝜇𝜇 𝜂𝜂� ,𝐷𝐷 = 𝑝𝑝 �𝜌𝜌𝑐𝑐𝑝𝑝𝛾𝛾 −𝐶𝐶𝑜𝑜
0 1

� ,𝐹𝐹 = 1
𝑝𝑝
�
𝑓𝑓𝜕𝜕
𝑓𝑓Ω
� ,

𝐴𝐴0 = �𝜆𝜆 0
0 𝜂𝜂� ,𝐵𝐵0 = �𝛼𝛼 0

0 𝛽𝛽� ,𝐺𝐺0 = �𝜙𝜙𝜕𝜕 + 𝛼𝛼𝑇𝑇0�(𝑝𝑝)
𝜙𝜙Ω + 𝛽𝛽Ω0�(𝑝𝑝)

� ,𝐺𝐺𝐻𝐻 = �
𝜏𝜏𝐻𝐻
𝜔𝜔Ω

� .
  (30) 

 
 Where the functions 𝑇𝑇0�(𝑝𝑝) and Ω0�(𝑝𝑝) are the corresponding images of the 
Laplace transform for boundary samples on the inlet for both temperature and moisture 
measurements, i.e., 𝑇𝑇(0, 𝑡𝑡) and Ω(0, 𝑡𝑡). After sequentially applying the Laplace 
transform (29) towards received system (25) – (27), and applying the substitutions (30) 
we obtain the following system: 
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⎩
⎪
⎨

⎪
⎧

𝜕𝜕
𝜕𝜕
�𝐴𝐴 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� − 𝐷𝐷𝑈𝑈 = −𝐹𝐹,

�𝐴𝐴0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑥𝑥 + 𝐵𝐵0�

𝜕𝜕=0
= 𝐺𝐺0, 𝑈𝑈𝜕𝜕=𝐻𝐻 = 𝐺𝐺𝐻𝐻,

�𝐴𝐴 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝑘𝑘

= 0, [𝑈𝑈]𝜕𝜕𝑘𝑘 = 0.

    (31) 

 
 As we mentioned above, analytical solution of the direct model (16) – (18) is 
obtained by introducing the square matrix 𝑋𝑋 and the vector 𝑌𝑌 through the following 
correlation: 
 

𝐴𝐴 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑈𝑈 = 𝑋𝑋𝑈𝑈 + 𝑌𝑌.      (32) 

 
 After substituting (32) to (31), the following statements for bot 𝑋𝑋 and 𝑌𝑌 are 
obtained: 
 

�
𝑋𝑋′ + 𝑋𝑋𝐴𝐴−1𝑋𝑋 = 𝐷𝐷,𝑋𝑋𝜕𝜕=0 = −𝐴𝐴𝐴𝐴0−1𝐵𝐵0, [𝑋𝑋]𝜕𝜕𝑘𝑘 = 0,
𝑌𝑌′ + 𝑋𝑋𝐴𝐴−1𝑌𝑌 = −𝐹𝐹,𝑌𝑌𝜕𝜕=0 = 𝐴𝐴𝐴𝐴0−1𝐺𝐺0, [𝑌𝑌]𝜕𝜕𝑘𝑘 = 0.

   (33) 

 
That is the matrix Riccati equation, which solution is demonstrated in [77]. Now 

we will demonstrate the prescribed approach utilized for the second posed problem 
part, that is the thermoelastic bending model, heat transfer equation system for 
multilayered medium, by considering the system [84] – [87]. For that reason, we will 
reformulate the mentioned system by prescribing more detailed initial – boundary 
conditions in the one-dimensional form, two-layered domain, introduced by Ω: (0, 𝜉𝜉) ∪
(𝜉𝜉, 𝐿𝐿) × (0, 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚): 

 
𝜌𝜌(𝑥𝑥)𝑐𝑐𝑝𝑝(𝑥𝑥) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕

𝜕𝜕𝑚𝑚
�𝑘𝑘(𝑥𝑥) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑚𝑚
� , (𝑥𝑥, 𝑡𝑡) ∈ Ω.    (34) 

 
𝑘𝑘1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

|𝑚𝑚=0 = ℎ𝑖𝑖𝑛𝑛𝑜𝑜(𝑇𝑇 − 𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜)|𝑚𝑚=0.     (35) 
 

𝑘𝑘2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

|𝑚𝑚=𝐿𝐿 = −ℎ𝑜𝑜𝑜𝑜𝜕𝜕(𝑇𝑇 − 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕)|𝑚𝑚=𝐿𝐿.     (36) 
 

𝑇𝑇(𝑥𝑥, 0) = 𝑇𝑇0(𝑥𝑥).        (37) 
 
𝑇𝑇(𝜉𝜉 + 0, 𝑡𝑡) = 𝑇𝑇(𝜉𝜉 − 0, 𝑡𝑡) = 𝑇𝑇𝜉𝜉 ,𝑘𝑘2

𝜕𝜕𝜕𝜕(𝜉𝜉+0,𝜕𝜕)
𝜕𝜕𝑚𝑚

= 𝑘𝑘2
𝜕𝜕𝜕𝜕(𝜉𝜉−0,𝜕𝜕)

𝜕𝜕𝑚𝑚
. (38) 

 
 Above system depicts the heat transfer through one-dimensional two-layered 
string, when both inlet and outlet are open and subjected to the heat exchange with 
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environment, where 𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜 and 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕 are the inside and outside temperatures respectively 
and 𝑇𝑇𝜉𝜉  – is the measured temperature over the contact region of two mediums that we 
will assume to be constant by considering the steady state of the heat transfer process. 
Although, there are variety of approaches utilized for the non-linear cases through 
quasi-linearization of received solutions, we will linearize the posed model via 
introducing the following piece-wise function: 
 

𝜌𝜌(𝑥𝑥) = �𝜌𝜌1, 𝑥𝑥 ∈ [0, 𝜉𝜉)
𝜌𝜌2, 𝑥𝑥 ∈ (𝜉𝜉, 𝐿𝐿] , 𝑐𝑐𝑝𝑝(𝑥𝑥) = �

𝑐𝑐𝑝𝑝1 , 𝑥𝑥 ∈ [0, 𝜉𝜉)
𝑐𝑐𝑝𝑝2 , 𝑥𝑥 ∈ (𝜉𝜉, 𝐿𝐿], 

 

𝑘𝑘(𝑥𝑥) = �𝑘𝑘1, 𝑥𝑥 ∈ [0, 𝜉𝜉)
𝑘𝑘2, 𝑥𝑥 ∈ (𝜉𝜉, 𝐿𝐿] ,𝛼𝛼(𝑥𝑥) = �

𝛼𝛼1 = 𝑘𝑘1
𝜌𝜌1𝑐𝑐𝑝𝑝1

, 𝑥𝑥 ∈ [0, 𝜉𝜉)

𝛼𝛼2 = 𝑘𝑘2
𝜌𝜌2𝑐𝑐𝑝𝑝2

, 𝑥𝑥 ∈ (𝜉𝜉, 𝐿𝐿]
.  (39) 

 
 Here we introduce continuously differentiable function 𝑣𝑣(𝑥𝑥, 𝑡𝑡), which is related 
to the temperature field via unknown coefficients 𝛾𝛾 and 𝛾𝛾1 that are subjects for 
determination and here 𝑥𝑥 ∈ [0, 𝜉𝜉]: 
 

�
𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥, 𝑡𝑡) + 𝛾𝛾 + 𝛾𝛾1𝑥𝑥,

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

+ 𝛾𝛾1.     (40) 

 
 Above substitution allows us to reduce the boundary conditions (36) towards: 
 

𝑘𝑘1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

|𝑚𝑚=0 = ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑣𝑣|𝑚𝑚=0 + ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝛾𝛾 − ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜 − 𝑘𝑘1𝛾𝛾1 .  (41) 
 
 The condition (41) is homogeneous only if the further identity is satisfied: 
 

�
ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝛾𝛾 − 𝑘𝑘1𝛾𝛾1 = 𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜ℎ𝑖𝑖𝑛𝑛𝑜𝑜,

𝛾𝛾 + 𝛾𝛾1𝜉𝜉 = 𝑇𝑇𝜉𝜉 .     (42) 

 
 With the major and auxiliary determinants of the posed system being the 
following expressions: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ ∆= �ℎ𝑖𝑖𝑛𝑛𝑜𝑜 −𝑘𝑘1

1 𝜉𝜉 � = 𝜉𝜉ℎ𝑖𝑖𝑛𝑛𝑜𝑜 + 𝑘𝑘1 > 0,

∆1= �
ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜 −𝑘𝑘1
𝑇𝑇𝜉𝜉 𝜉𝜉 � = 𝜉𝜉ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜 + 𝑇𝑇𝜉𝜉𝑘𝑘1,

∆2= �
ℎ𝑖𝑖𝑛𝑛𝑜𝑜 ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜

1 𝑇𝑇𝜉𝜉
� = ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇𝜉𝜉 − ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜 = ℎ𝑖𝑖𝑛𝑛𝑜𝑜�𝑇𝑇𝜉𝜉 − 𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜�.

 (43) 
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 By knowing above determinants, we may further determine the unknown 
coefficients by: 
 

�
𝛾𝛾 = ∆1

∆
= 𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖+𝜕𝜕𝜉𝜉𝑘𝑘1

𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1
,

𝛾𝛾1 = ∆2
∆

= ℎ𝑖𝑖𝑖𝑖𝑖𝑖�𝜕𝜕𝜉𝜉−𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖�
𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1

.
    (44) 

 
 Now, we may link initially posed problem with the introduced homogenized 
function as: 
 

𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥, 𝑡𝑡) + 𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖+𝜕𝜕𝜉𝜉𝑘𝑘1
𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1

+ ℎ𝑖𝑖𝑖𝑖𝑖𝑖�𝜕𝜕𝜉𝜉−𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖�
𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1

𝑥𝑥.   (45) 

 
 From (45), we observe equivalent rates of functions changes with respect to 
time and the differential relations with respect to spatial variables hold, i.e.: 
  

�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕
𝜕𝜕𝑚𝑚
�𝑘𝑘(𝑥𝑥) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑚𝑚
� = 𝜕𝜕

𝜕𝜕𝑚𝑚
�𝑘𝑘(𝑥𝑥) �𝜕𝜕𝜕𝜕

𝜕𝜕𝑚𝑚
+ 𝛾𝛾1�� = 𝜕𝜕

𝜕𝜕𝑚𝑚
�𝑘𝑘(𝑥𝑥) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑚𝑚
� .

  (46) 

 
 Thus, the governing equation and the system of boundary and continuity 
conditions for the introduced function 𝑣𝑣(𝑥𝑥, 𝑡𝑡) is: 
 

⎩
⎨

⎧ 𝜌𝜌(𝑥𝑥)𝑐𝑐(𝑥𝑥) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

= 𝜕𝜕
𝜕𝜕𝑚𝑚
�𝑘𝑘(𝑥𝑥) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑚𝑚
� ,

𝑘𝑘1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

|𝑚𝑚=0 = ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑣𝑣|𝑚𝑚=0, 𝑣𝑣(𝜉𝜉, 𝑡𝑡) = 0,
𝑇𝑇(𝜉𝜉 − 0, 𝑡𝑡) = 𝑇𝑇𝜉𝜉 = 𝑣𝑣(𝜉𝜉 − 0, 𝑡𝑡) + 𝛾𝛾 + 𝛾𝛾1𝜉𝜉.

   (47) 

  
 That is an equivalent problem for the posed (34 – 38) system, defined over sub-
domain 𝑥𝑥 ∈ [0, 𝜉𝜉]. The similar procedure we shall perform for the second layer by 
applying the corresponding substitution for 𝑥𝑥 ∈ [𝜉𝜉, 𝐿𝐿] and taking into account the 
boundary conditions over outlet domain: 
 

�

𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥, 𝑡𝑡) + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥,
𝑇𝑇(𝜉𝜉, 𝑡𝑡) = 𝑣𝑣(𝜉𝜉, 𝑡𝑡) + 𝛽𝛽 + 𝛽𝛽1𝜉𝜉 = 𝑇𝑇𝜉𝜉 ,

𝑘𝑘2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

+ 𝛽𝛽1� = −ℎ𝑜𝑜𝑜𝑜𝜕𝜕(𝑣𝑣(𝐿𝐿, 𝑡𝑡) + 𝛽𝛽 + 𝛽𝛽1𝐿𝐿 − 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕).
  (48) 

 
 Further in order to receive the homogenized expressions for (48), introduced 
unknown coefficients should satisfy following system of equation: 
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�
𝛽𝛽 + 𝛽𝛽1𝜉𝜉 = 𝑇𝑇𝜉𝜉 ,

𝛽𝛽ℎ𝑜𝑜𝑜𝑜𝜕𝜕 + 𝛽𝛽1(𝑘𝑘2 + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝐿𝐿) = ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕 .
   (49) 

 
 Similarly, as to the previously determined coefficients 𝛾𝛾, 𝛾𝛾1, we are applying the 
Cramer’s method by evaluating the following determinants: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ ∆= � 1 𝜉𝜉

ℎ𝑜𝑜𝑜𝑜𝜕𝜕 𝑘𝑘2 + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝐿𝐿
� = 𝑘𝑘2 + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝐿𝐿 − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝜉𝜉 > 0,

∆1= �
𝑇𝑇𝜉𝜉 𝜉𝜉

ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕 𝑘𝑘2 + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝐿𝐿
� = 𝑇𝑇𝜉𝜉(𝑘𝑘2 + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝐿𝐿) − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕𝜉𝜉,

∆2= �
1 𝑇𝑇𝜉𝜉

ℎ𝑜𝑜𝑜𝑜𝜕𝜕 ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕
� = ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕 − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝜉𝜉 .

 (50) 

 
 Therefore, the computational formulas for homogenized coefficients are: 
 

�
𝛽𝛽 = ∆1

∆
= 𝜕𝜕𝜉𝜉𝑘𝑘2+ℎ𝑜𝑜𝑜𝑜𝑡𝑡�𝜕𝜕𝜉𝜉𝐿𝐿−𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝜉𝜉�

𝑘𝑘2+ℎ𝑜𝑜𝑜𝑜𝑡𝑡(𝐿𝐿−𝜉𝜉)
,

𝛽𝛽1 = ∆2
∆

= ℎ𝑜𝑜𝑜𝑜𝑡𝑡�𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡−𝜕𝜕𝜉𝜉�
𝑘𝑘2+ℎ𝑜𝑜𝑜𝑜𝑡𝑡(𝐿𝐿−𝜉𝜉)

.
    (51) 

 
 Further we construct the system for the introduced function 𝑣𝑣(𝑥𝑥, 𝑡𝑡) towards the 
second sub-domain, when 𝑥𝑥 ∈ [𝜉𝜉, 𝐿𝐿]: 
 

�
1
𝛼𝛼22

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑚𝑚2

,   𝑥𝑥 ∈ (𝜉𝜉, 𝐿𝐿) 𝑡𝑡 ∈ (0, 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚),

𝑣𝑣(𝜉𝜉, 0) = 0, 𝑘𝑘2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

+ ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑣𝑣|𝑚𝑚=𝐿𝐿 = 0.
   (52) 

 
2.2 Reduction of dimensionality of the direct multiphysical mathematical 

model in the real time domain 
Concerning the thermoelastic model given by (16 – 23), it is necessary to note 

that in the considered model the displacement and velocity initially take zero values, 
such that: 

 

�
𝑊𝑊(𝑥𝑥,𝑦𝑦, 0) = 0,
𝜕𝜕𝑊𝑊(𝑚𝑚,𝑦𝑦,0)

𝜕𝜕𝜕𝜕
= 0.       (52) 

 
 We also shall indicate the rigid joint conditions, stating that considered plate 
has fixed supports at the upper boundary of the plate 𝛤𝛤: 

 
𝜕𝜕𝑊𝑊(𝑚𝑚,𝑦𝑦,𝜕𝜕)

𝜕𝜕𝑛𝑛
|(𝑚𝑚,𝑦𝑦)∈𝛤𝛤 = 𝑊𝑊(𝑥𝑥,𝑦𝑦, 𝑡𝑡)|(𝑚𝑚,𝑦𝑦)∈𝛤𝛤 = 0.   (53) 
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Furthermore, we apply the locally one-dimensional splitting scheme towards the 

equation (20) and reduce the initially posed multidimensional thermoelastic model to 
the sequence of one-dimensional equations, considering the case of linear heat transfer 
coefficients without any heat source inside the domain. For that reason, we depict the 
boundaries of investigated domain as a parallelepiped by 𝑃𝑃: �𝑥𝑥 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3), 0 ≤ 𝑥𝑥𝑗𝑗 < 𝑆𝑆𝑗𝑗 , �0 < 𝑆𝑆𝑗𝑗 < ∞, 𝑗𝑗 = 1,2,3��, then we may introduce the 
following terms: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑅𝑅(𝑗𝑗)𝑉𝑉(𝑗𝑗) = 𝑘𝑘 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑚𝑚𝑗𝑗
2 , 𝑗𝑗 = 1,3����, 𝑡𝑡 ∈ (0, 𝑡𝑡∗),

𝜕𝜕𝑉𝑉(1)

𝜕𝜕𝜕𝜕
= 𝑅𝑅(1)𝑉𝑉(1), 𝑉𝑉(1)(0, 𝑥𝑥) = 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕(𝑥𝑥), 𝑉𝑉(1)|𝛤𝛤 = ℎ𝜔𝜔1,

𝜕𝜕𝑉𝑉(2)

𝜕𝜕𝜕𝜕
= 𝑅𝑅(2)𝑉𝑉(2), 𝑉𝑉(2)(0,𝑥𝑥) = 𝑉𝑉(1)(𝑡𝑡∗, 𝑥𝑥), 𝑉𝑉(2)|𝛤𝛤 = ℎ𝜔𝜔2,

𝜕𝜕𝑉𝑉(3)

𝜕𝜕𝜕𝜕
= 𝑅𝑅(3)𝑉𝑉(3), 𝑉𝑉(3)(0,𝑥𝑥) = 𝑉𝑉(2)(𝑡𝑡∗, 𝑥𝑥), 𝑉𝑉(3)|𝛤𝛤 = ℎ𝜔𝜔3.

    (54) 

 
Solutions of (54) are easily received by the Fourier method, since both spatial 

and time variables are separable due to the well posed initial boundary conditions for 
the sequence of posed equations. The solutions take the following form: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑉𝑉(1)(𝑥𝑥, 𝑡𝑡∗) =

2
𝑆𝑆1

� � 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕(𝜉𝜉, 𝑥𝑥2, 𝑥𝑥3) sin �
𝑚𝑚1𝜋𝜋𝜉𝜉
𝑆𝑆1

� 𝑧𝑧𝜉𝜉 × 𝑒𝑒
−𝜕𝜕∗𝑘𝑘

𝑛𝑛12𝜋𝜋2
𝑆𝑆12 sin �

𝑚𝑚1𝜋𝜋𝑥𝑥1
𝑆𝑆1

�

𝑆𝑆1

0

∞

𝑛𝑛1=1

,

𝑉𝑉(2)(𝑥𝑥, 𝑡𝑡∗) =
2
𝑆𝑆2

� � 𝑉𝑉(1)(𝑡𝑡∗, 𝑥𝑥1, 𝜂𝜂, 𝑥𝑥3) sin �
𝑚𝑚2𝜋𝜋𝜂𝜂
𝑆𝑆2

� 𝑧𝑧𝜂𝜂 × 𝑒𝑒
−𝜕𝜕∗𝑘𝑘

𝑛𝑛22𝜋𝜋2
𝑆𝑆22 sin �

𝑚𝑚2𝜋𝜋𝑥𝑥2
𝑆𝑆2

�

𝑆𝑆2

0

∞

𝑛𝑛2=1

,

𝑉𝑉(3)(𝑥𝑥, 𝑡𝑡∗) =
2
𝑆𝑆3

� � 𝑉𝑉(2)(𝑡𝑡∗, 𝑥𝑥1, 𝑥𝑥2, 𝛾𝛾) sin �
𝑚𝑚3𝜋𝜋𝛾𝛾
𝑆𝑆3

� 𝑧𝑧𝛾𝛾 × 𝑒𝑒
−𝜕𝜕∗𝑘𝑘

𝑛𝑛32𝜋𝜋2
𝑆𝑆32 sin �

𝑚𝑚3𝜋𝜋𝑥𝑥3
𝑆𝑆3

�

𝑆𝑆3

0

∞

𝑛𝑛3=1

.

 

(55) 
 
 Subsequently plugging expression of 𝑉𝑉(1) to 𝑉𝑉(2) and 𝑉𝑉(2) to 𝑉𝑉(3), we obtain 
following terms for the direct thermoelastic model in the following form: 
 

𝑉𝑉(2)(𝑥𝑥, 𝑡𝑡∗) =
4

𝑆𝑆1𝑆𝑆2
� � exp �−𝑡𝑡∗𝑘𝑘 �

𝑚𝑚12𝜋𝜋2

𝑆𝑆12
+
𝑚𝑚22𝜋𝜋2

𝑆𝑆22
��

∞

𝑛𝑛1=1

∞

𝑛𝑛2=1

� sin �
𝑚𝑚2𝜋𝜋𝜂𝜂
𝑆𝑆2

� ×

𝑆𝑆2

0

 

 
× �∫ 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕(𝜉𝜉, 𝜂𝜂, 𝑥𝑥3) sin �𝑛𝑛1𝜋𝜋𝜉𝜉

𝑆𝑆1
� 𝑧𝑧𝜉𝜉𝑆𝑆1

0 � 𝑧𝑧𝜂𝜂 sin �𝑛𝑛1𝜋𝜋𝑚𝑚1
𝑆𝑆1

� sin �𝑛𝑛2𝜋𝜋𝑚𝑚2
𝑆𝑆2

�.  
           (56) 
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𝑉𝑉(3)(𝑥𝑥, 𝑡𝑡∗) =
8

𝑆𝑆1𝑆𝑆2𝑆𝑆3
� � � � sin �

𝑚𝑚3𝜋𝜋𝛾𝛾
𝑆𝑆3

�

𝑆𝑆3

0

∞

𝑛𝑛1=1

∞

𝑛𝑛2=1

∞

𝑛𝑛3=1

{� sin �
𝑚𝑚2𝜋𝜋𝜂𝜂
𝑆𝑆2

� ×

𝑆𝑆2

0

 

 

× �� 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕(𝜉𝜉, 𝜂𝜂, 𝛾𝛾) sin �
𝑚𝑚1𝜋𝜋𝜉𝜉
𝑆𝑆1

� 𝑧𝑧𝜉𝜉

𝑆𝑆1

0

� 𝑧𝑧𝜂𝜂}𝑧𝑧𝛾𝛾 × 

 
× exp �−𝑡𝑡∗𝑘𝑘 �

𝑛𝑛12𝜋𝜋2

𝑆𝑆12
+ 𝑛𝑛22𝜋𝜋2

𝑆𝑆22
+ 𝑛𝑛32𝜋𝜋2

𝑆𝑆32
��∏ sin �𝑛𝑛𝑖𝑖𝜋𝜋𝑚𝑚𝑖𝑖

𝑆𝑆𝑖𝑖
�3

𝑖𝑖=1 = 𝑇𝑇(𝑡𝑡∗, 𝑥𝑥). (57) 
 
The ideas that were illustrated in the 2.1 and 2.2 parts outline the general 

springboard that lied in the foundation of our analytical investigations of the inverse 
analysis methodology, that we have utilized for the derivation of analytical expressions 
for simultaneous determination of several parameters of multi-physical processes. 

Further chapters of the current thesis part will be concentrated on the derivation 
of the mentioned expressions and discussion of the major peculiarities for variations of 
direct model statement considered as selected case studies. 
 

2.3 Analytical expressions for inverse analysis methodology derivation 
procedure for homogenized multiphysical process 
 In current section, we will depict main postulates for the derivation of analytical 
expressions for both direct and inverse analysis methodological approach utilized for 
homogenized models (47) and (52), which are split equivalences for the system (34 – 
38). 
 Initially, we will demonstrate the analytical solution derivation for the system 
(47), which we are seeking in the form of 𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝑋𝑋0(𝑥𝑥)𝑇𝑇0(𝑡𝑡). By plugging the 
suggested substitution into (47), and introducing the root of characteristic equation of 
the proposed form as 𝜆𝜆 we will obtain: 
 

1
𝛼𝛼2

𝜕𝜕0′(𝜕𝜕)
𝜕𝜕0(𝜕𝜕)

= −𝜆𝜆2, 𝑋𝑋0
′(𝑚𝑚)

𝑋𝑋0(𝑚𝑚)
= −𝜆𝜆2, 𝑥𝑥 ∈ (0, 𝜉𝜉), 𝑡𝑡 ∈ (0, 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚).  (58) 

 
 First and second equations of the received system have following solutions: 
 

� 𝑇𝑇0(𝑡𝑡) = 𝑇𝑇0(0)𝑒𝑒−𝜆𝜆2𝛼𝛼2𝜕𝜕 , 𝑡𝑡 ∈ (0, 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚),
𝑋𝑋0(𝑥𝑥) = 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴(𝜆𝜆𝑥𝑥) + 𝐵𝐵𝐴𝐴𝑚𝑚𝑚𝑚(𝜆𝜆𝑥𝑥), 𝑥𝑥 ∈ (0, 𝜉𝜉).

   (59) 

 
 Above system allows us to obtain an exact form of the function 𝑣𝑣(𝑥𝑥, 𝑡𝑡) over the 
first sub-domain as: 
 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇0(0)𝑒𝑒−𝜆𝜆𝛼𝛼2𝜕𝜕�𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴(𝜆𝜆𝑥𝑥) + 𝐵𝐵𝐴𝐴𝑚𝑚𝑚𝑚(𝜆𝜆𝑥𝑥)�.   (60) 
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 Further we apply the boundary condition 𝑣𝑣(𝜉𝜉, 𝑡𝑡) = 0 and assume the non-
triviality principal of seek solution, i.e.: 
 

�
𝑇𝑇0(0)𝑒𝑒−𝜆𝜆𝛼𝛼2𝜕𝜕�𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴(𝜆𝜆𝑥𝑥) + 𝐵𝐵𝐴𝐴𝑚𝑚𝑚𝑚(𝜆𝜆𝑥𝑥)� = 0,

𝑇𝑇0(0)𝑒𝑒−𝜆𝜆𝛼𝛼2𝜕𝜕 ≠ 0.
    (61) 

 
 Taking into account (61), we may rewrite (60) as the general characteristic 
equation that should be solved via: 
 

𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴[𝜆𝜆𝜉𝜉] + 𝐵𝐵𝐴𝐴𝑚𝑚𝑚𝑚[𝜆𝜆𝜉𝜉] = 0.     (62) 
 
 Furthermore, we use the first boundary condition of the model (47) and observe 
the value of unknown function 𝑣𝑣(𝑥𝑥, 𝑡𝑡) at origin, that is: 𝑣𝑣(0, 𝑡𝑡) = 𝐴𝐴𝑇𝑇0(𝑡𝑡). From this 
observation we will rewrite the Robin condition in the following consequential order: 
 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

|𝑚𝑚=0 = 𝑇𝑇0(0)𝑒𝑒−𝜆𝜆𝛼𝛼2𝜕𝜕(−𝐴𝐴𝜆𝜆𝐴𝐴𝑚𝑚𝑚𝑚[𝜆𝜆0] + 𝐵𝐵𝜆𝜆𝑐𝑐𝐴𝐴𝐴𝐴[𝜆𝜆0]) = 𝐵𝐵𝜆𝜆𝑇𝑇0(𝑡𝑡),
𝑘𝑘1𝐵𝐵𝜆𝜆𝑇𝑇0(𝑡𝑡) = ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇0(𝑡𝑡)𝐴𝐴.

 (63) 

 
Due to non-triviality of solutions, we have the inequality 𝑇𝑇0(𝑡𝑡) ≠ 0, 𝑡𝑡 ∈

(0, 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚), and it gives us the following formulas: 
 

𝐴𝐴 = 𝑘𝑘1𝐵𝐵𝜆𝜆
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

→ 𝐴𝐴
𝐵𝐵

= 𝑘𝑘1𝜆𝜆
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

.    (64) 
 
Afterwards, we transform the equation (62), and deduce the following relation 

between coefficients 𝐴𝐴 and 𝐵𝐵 in a form of the following equation: 
 

𝐴𝐴
𝐵𝐵

= −𝑡𝑡𝑡𝑡[𝜆𝜆𝜉𝜉].     (65) 
 
Combining the equations (64) and (65), we get the following transcendental 

equation: 
 

𝑘𝑘1𝜆𝜆
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= −𝑡𝑡𝑡𝑡[𝜆𝜆𝜉𝜉].     (66) 
 
We suggest that the transcendental equation above could be solved analytically 

by applying the suitable transformation, however it will not affect the general solution 
in terms of precision, therefore, we approach the solution of (66) numerically for 
parameter 𝜆𝜆 and obtain values for 𝜆𝜆1, 𝜆𝜆2, … 𝜆𝜆𝑛𝑛. After that the solution (60) could be 
rewritten as: 

 
𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇0(0)𝑒𝑒−𝜆𝜆𝑖𝑖𝛼𝛼2𝜕𝜕(𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴[𝜆𝜆𝑛𝑛𝑥𝑥] + 𝐵𝐵𝐴𝐴𝑚𝑚𝑚𝑚[𝜆𝜆𝑛𝑛𝑥𝑥]), 𝑚𝑚 = 1,2, … (67) 
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Applying the boundary conditions (63), we may present the solution via 

unknown coefficient as: 
 

𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡) = 𝐵𝐵𝑛𝑛𝑇𝑇0(0)𝑒𝑒−𝜆𝜆𝑖𝑖𝛼𝛼2𝜕𝜕 �𝑘𝑘1𝜆𝜆𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝐴𝐴𝐴𝐴[𝜆𝜆𝑛𝑛𝑥𝑥] + 𝐴𝐴𝑚𝑚𝑚𝑚[𝜆𝜆𝑛𝑛𝑥𝑥]�. (68) 
 
For comfortable representation we are denoting from this step 𝐵𝐵𝑛𝑛𝑇𝑇0(0) again by 

𝐵𝐵𝑛𝑛, just for convenience, and rewrite (68) as: 
 
𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡) = 𝐵𝐵𝑛𝑛𝑒𝑒−𝜆𝜆𝑖𝑖𝛼𝛼

2𝜕𝜕 �𝑘𝑘1𝜆𝜆𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝐴𝐴𝐴𝐴[𝜆𝜆𝑛𝑛𝑥𝑥] + 𝐴𝐴𝑚𝑚𝑚𝑚[𝜆𝜆𝑛𝑛𝑥𝑥]� , 𝑚𝑚 = 1,2, … (69) 
 
Due to linearity of initial equation, we may present the solution now in a form 

of the following series by superposition principle: 
 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) = ∑ 𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡)∞
𝑛𝑛=1 = ∑ 𝐵𝐵𝑛𝑛𝑒𝑒−𝜆𝜆𝑖𝑖𝛼𝛼

2𝜕𝜕𝑋𝑋𝑛𝑛(𝑥𝑥)∞
𝑛𝑛=1 .   (70) 

 
Here 𝑋𝑋𝑛𝑛(𝑥𝑥) is a family of eigen functions of the governing equation for model 

(47) when spatial subdomain is 𝑥𝑥 ∈ (0, 𝜉𝜉). Taking into account above fact, we state the 
first lemma. 

Lemma 1. If n ≠ 𝑚𝑚, we have the following identity that postulates an 
orthogonality of the proposed system 𝑋𝑋𝑛𝑛(𝑥𝑥), ∀𝑚𝑚,𝑚𝑚 ∈ 𝑍𝑍: 

 
∫ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝑧𝑧𝑥𝑥 = 0𝜉𝜉
0 .     (71) 

 
Proof. The eigenfunctions are representing the solution of the governing 

equation for model (47), thus we have the following identities: 
 

� 𝑋𝑋𝑛𝑛
′′(𝑥𝑥) + 𝜆𝜆𝑛𝑛2𝑋𝑋𝑛𝑛(𝑥𝑥) = 0,

  𝑋𝑋𝑚𝑚′′(𝑥𝑥) + 𝜆𝜆𝑚𝑚2 𝑋𝑋𝑚𝑚(𝑥𝑥) = 0.
     (72) 

 
 Further, in order to sustain the proof, we perform the multiplication operation of 
the first equation in (72) by X𝑚𝑚(𝑥𝑥), and the second equation by 𝑋𝑋𝑛𝑛(𝑥𝑥) and subtract the 
second expression from the first one, it will allow us to obtain the following identity: 
 

𝑋𝑋𝑛𝑛′′(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)− 𝑋𝑋𝑚𝑚′′(𝑥𝑥)𝑋𝑋𝑛𝑛(𝑥𝑥) + (𝜆𝜆𝑛𝑛2 − 𝜆𝜆𝑚𝑚2 )𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥) = 0.  (73) 
 

From general rules of differentiation calculus, we may imply the next 
expression: 
 

𝑋𝑋𝑛𝑛′′(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)− 𝑋𝑋𝑚𝑚′′(𝑥𝑥)𝑋𝑋𝑛𝑛(𝑥𝑥) = �𝑋𝑋𝑛𝑛′ (𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)− 𝑋𝑋𝑚𝑚′ (𝑥𝑥)𝑋𝑋𝑛𝑛(𝑥𝑥)�′. (74) 
 

By performing above manipulation, we receive the transformed form of (73) as: 
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�𝑋𝑋𝑛𝑛′ (𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)− 𝑋𝑋𝑚𝑚′ (𝑥𝑥)𝑋𝑋𝑛𝑛(𝑥𝑥)�′ + (𝜆𝜆𝑛𝑛2 − 𝜆𝜆𝑚𝑚2 )𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥) = 0. (75) 

 
The received expression (75) then is continuously summed along the spatial 

component 𝑥𝑥 from 0 to 𝜉𝜉 by the following integral, so we receive: 
 

𝑋𝑋𝑛𝑛′ (𝜉𝜉)𝑋𝑋𝑚𝑚(𝜉𝜉) − 𝑋𝑋𝑚𝑚′ (𝜉𝜉)𝑋𝑋𝑛𝑛(𝜉𝜉)− 𝑋𝑋𝑛𝑛′ (0)𝑋𝑋𝑚𝑚(0) + 𝑋𝑋𝑚𝑚′ (0)𝑋𝑋𝑛𝑛(0) = 
= (𝜆𝜆𝑚𝑚2 − 𝜆𝜆𝑛𝑛2)∫ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝑧𝑧𝑥𝑥𝜉𝜉

0 .    (76) 
 
Analyzing both families of the functions 𝑋𝑋𝑛𝑛(𝑥𝑥) and 𝑋𝑋𝑚𝑚(𝑥𝑥), we may derive the 

boundary conditions for these systems as: 
 

𝑋𝑋𝑛𝑛(𝜉𝜉) = 0, 𝑋𝑋𝑚𝑚(𝜉𝜉) = 0, 𝑋𝑋𝑛𝑛′ (0) = ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘1

𝑋𝑋𝑛𝑛(0), 𝑋𝑋𝑚𝑚′ (0) = ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘1

𝑋𝑋𝑚𝑚(0).  (77) 
 
The derived boundary conditions (77) allow us to set the left part of integral 

expression (76) to zero, so now we observe the following identity: 
 

(𝜆𝜆𝑚𝑚2 − 𝜆𝜆𝑛𝑛2)∫ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝑧𝑧𝑥𝑥𝜉𝜉
0 = 0.    (78) 

 
Whenever we consider the cases 𝑚𝑚 ≠ 𝑚𝑚, 𝜆𝜆𝑛𝑛 ≠ 𝜆𝜆𝑛𝑛 we obtain an exact form of 

orthogonality of the functions 𝑋𝑋𝑛𝑛(𝑥𝑥) and 𝑋𝑋𝑚𝑚(𝑥𝑥) as: 
 

∫ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝑧𝑧𝑥𝑥𝜉𝜉
0 = 0.     (79) 

∎ 
Additionally, we need to propose another lemma that will allow us to derive the 

computational formula of the norm of the eigenfunctions 𝑋𝑋𝑛𝑛(𝑥𝑥). 
 Lemma 2. The computational formula for the norm of the eigenfunction 𝑋𝑋𝑛𝑛(𝑥𝑥),

∀𝑚𝑚 ∈ 𝑍𝑍 takes the following form: 
 

‖𝑋𝑋𝑛𝑛‖2 = ∫ [𝑋𝑋𝑛𝑛(𝑥𝑥)]2𝑧𝑧𝑥𝑥𝜉𝜉
0 = 𝛼𝛼2+𝜉𝜉

2
+ 𝛼𝛼

2𝜆𝜆𝑖𝑖
,𝛼𝛼 = 𝑘𝑘1𝜇𝜇𝑖𝑖

ℎ𝑖𝑖𝑖𝑖𝑖𝑖
.  (80) 

 
Proof. We will start the proof of proposed lemma by the direct computation of 

the suggested integral in a form: 
 

∫ �𝑘𝑘1𝜆𝜆𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝐴𝐴𝐴𝐴[𝜆𝜆𝑛𝑛𝑥𝑥] + 𝐴𝐴𝑚𝑚𝑚𝑚[𝜆𝜆𝑛𝑛𝑥𝑥]�
2
𝑧𝑧𝑥𝑥𝜉𝜉

0 .    (81) 
 
In order to perform the evaluation of posed integral, we shall apply the 

decreasing order formula which has the following form: 
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‖𝑋𝑋𝑛𝑛‖2 =
𝛼𝛼2

2 �(1 + 𝑐𝑐𝐴𝐴𝐴𝐴[2𝜆𝜆𝑛𝑛𝑥𝑥])𝑧𝑧𝑥𝑥

𝜉𝜉

0

+
1
2�

(1 − 𝑐𝑐𝐴𝐴𝐴𝐴[2𝜆𝜆𝑛𝑛𝑥𝑥])𝑧𝑧𝑥𝑥

𝜉𝜉

0

+ 

+2𝛼𝛼 ∫ (𝑐𝑐𝐴𝐴𝐴𝐴[𝜆𝜆𝑛𝑛𝑥𝑥]𝐴𝐴𝑚𝑚𝑚𝑚[𝜆𝜆𝑛𝑛𝑥𝑥])𝑧𝑧𝑥𝑥𝜉𝜉
0 .   (82) 

 
Right after the direct computation of the received integral (82), we obtain an 

expression: 
 

‖𝑋𝑋𝑛𝑛‖2 =
𝛼𝛼2

2 �𝑥𝑥 +
1

2𝜆𝜆𝑛𝑛
𝐴𝐴𝑚𝑚𝑚𝑚[2𝜆𝜆𝑛𝑛𝑥𝑥]� |0

𝜉𝜉 +
1
2 �𝑥𝑥 −

1
2𝜆𝜆𝑛𝑛

sin[2𝜆𝜆𝑛𝑛𝑥𝑥]� |0
𝜉𝜉 + 

+ 2𝛼𝛼
𝜆𝜆𝑖𝑖

sin2[𝜆𝜆𝑖𝑖𝑚𝑚]
2

|0
𝜉𝜉 .     (83) 

 
After plugging the limits in this expression, it will be transformed into: 
 
‖𝑋𝑋𝑛𝑛‖2 = 𝜉𝜉

2
(𝛼𝛼2 + 1) + sin[2𝜆𝜆𝑖𝑖𝜉𝜉]

4𝜆𝜆𝑖𝑖
(𝛼𝛼2 − 1) + 𝛼𝛼

𝜆𝜆𝑖𝑖
sin2[𝜆𝜆𝑛𝑛𝜉𝜉].  (84) 

 
Here, we may imply the following trigonometrical identities: 
 

�
sin[2𝜆𝜆𝑛𝑛𝜉𝜉] = 2𝜕𝜕𝑡𝑡[𝜆𝜆𝑖𝑖𝜉𝜉]

1+𝜕𝜕𝑡𝑡2[𝜆𝜆𝑖𝑖𝜉𝜉]
,

sin2[𝜆𝜆𝑛𝑛𝜉𝜉] = 𝜕𝜕𝑡𝑡2[𝜆𝜆𝑖𝑖𝜉𝜉]
1+𝜕𝜕𝑡𝑡2[𝜆𝜆𝑖𝑖𝜉𝜉]

.
      (85) 

 
From another point of view, we may get an equality 𝑡𝑡𝑡𝑡[𝜆𝜆𝑛𝑛𝜉𝜉] = −𝛼𝛼, thus our 

norm will be rewritten now as the following computational formula: 
 

‖𝑋𝑋𝑛𝑛‖2 =
𝜉𝜉
2

(𝛼𝛼2 + 1) −
𝛼𝛼

2𝜆𝜆𝑛𝑛
(𝛼𝛼2 − 1)
1 + 𝛼𝛼2

+
𝛼𝛼
𝜆𝜆𝑛𝑛

𝛼𝛼2

1 + 𝛼𝛼2 =
𝜉𝜉
2

(𝛼𝛼2 + 1) +
2𝛼𝛼3 − 𝛼𝛼(𝛼𝛼2 − 1)

2𝜆𝜆𝑛𝑛(𝛼𝛼2 + 1)
= 

= 𝜉𝜉
2

(𝛼𝛼2 + 1) + 𝛼𝛼
2𝜆𝜆𝑖𝑖

= 𝜉𝜉
2
��𝑘𝑘1𝜇𝜇𝑖𝑖

ℎ𝑖𝑖𝑖𝑖𝑖𝑖
�
2

+ 1� + 𝑘𝑘1
2ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= 𝐴𝐴𝑛𝑛.  (86) 

∎ 
Now we observe initial instance of time for the equation (70) in order to deduce 

the computable and explicit form of the function 𝑣𝑣(𝑥𝑥, 𝑡𝑡): 
 

𝑣𝑣(𝑥𝑥, 0) = ∑ 𝑣𝑣𝑛𝑛(𝑥𝑥, 0)∞
𝑛𝑛=1 = ∑ 𝐵𝐵𝑛𝑛𝑋𝑋𝑛𝑛(𝑥𝑥)∞

𝑛𝑛=1 .    (87) 
 
At the same time, we are taking into account the identity (40) at initial time 

instance, i.e., 𝑣𝑣(𝑥𝑥, 0) = 𝑢𝑢0(𝑥𝑥)− 𝛾𝛾 − 𝛾𝛾1𝑥𝑥. Furthermore, here we are multiplying the 
both sides of the second equation of system (59) by the function 𝑋𝑋𝑚𝑚(𝑥𝑥) and integrate 
it along the spatial variable 𝑥𝑥 from 0 to 𝜉𝜉. Afterwards we use the conclusions of the 
lemmas 1 and 2 in order to obtain the following identity:  
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∫ (𝑢𝑢0(𝑥𝑥)− 𝛾𝛾 − 𝛾𝛾1𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝑧𝑧𝑥𝑥𝜉𝜉
0 = 𝐴𝐴𝑚𝑚𝐵𝐵𝑚𝑚, 𝑚𝑚 = 1,2, …  (88) 

 
The above expression gives us opportunity to derive the computational 

expression for 𝐵𝐵𝑛𝑛 as the following explicit identity: 
 

𝐵𝐵𝑛𝑛 = 1
𝐴𝐴𝑖𝑖
∫ (𝑢𝑢0(𝑥𝑥)− 𝛾𝛾 − 𝛾𝛾1𝑥𝑥)𝑋𝑋𝑛𝑛(𝑥𝑥)𝑧𝑧𝑥𝑥𝜉𝜉
0 , 𝑚𝑚 = 1,2, …  (89) 

 
At this point we already demonstrated the solution derivation of the direct model 

(34) – (38) along the first sub-domain, when 𝑥𝑥 ∈ (0, 𝜉𝜉) for homogenized sampled 
measurements. Now we shall perform same procedure steps along the second portion 
of the domain, i.e., when 𝑥𝑥 ∈ (𝜉𝜉, 𝐿𝐿). Since we have already demonstrated the 
homogenization process of the original model, we will start here by working with the 
model (52) via introduction of the following spatial variable substitution to receive 
more convenient form of the model. We introduce 𝑥𝑥 = 𝑥𝑥 − 𝜉𝜉, and afterwards we 
substitute 𝑥𝑥 = 𝑥𝑥 + 𝜉𝜉. By observing introduced relations we may derive the differential 
identity: 
 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

𝜕𝜕𝑚𝑚
𝜕𝜕𝑚𝑚

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

,
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑚𝑚2

= 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑚𝑚2

.
        (90) 

 
 For convenience reasons we will use further the variable 𝑥𝑥 denoted through the 
same variable 𝑥𝑥 and our system (52) will obtain the following form: 
 

�
1
𝛼𝛼22

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑚𝑚2

, 𝑥𝑥 ∈ (0, 𝑙𝑙 − 𝜉𝜉), 𝑡𝑡 ∈ (0, 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚),

𝑣𝑣(0, 𝑡𝑡) = 0,𝑘𝑘2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

|𝑚𝑚=𝑙𝑙−𝜉𝜉 + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑣𝑣|𝑚𝑚=𝑙𝑙−𝜉𝜉 = 0.
    (91) 

 
 The solution to posed model (91) we will seek in the analogue approach to first 
sub-domain, as 𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝑋𝑋2(𝑥𝑥)𝑇𝑇2(𝑡𝑡). This substitution, will provide us the following 
system of differential equations: 
 

1
𝛼𝛼22

𝜕𝜕2′(𝜕𝜕)
𝜕𝜕2(𝜕𝜕)

= −𝜇𝜇2, 𝑋𝑋2′(𝑚𝑚)
𝑋𝑋2(𝑚𝑚)

= −𝜇𝜇2.      (92) 
 
 At the same time, we have the following general solution of the posed system, 
represented by roots of characteristic equations, 𝜇𝜇 and unknown coefficients:  
 

𝑇𝑇2(𝑡𝑡) = 𝑇𝑇2(0)𝑒𝑒−𝜇𝜇2𝛼𝛼22𝜕𝜕 , 𝑋𝑋2(𝑥𝑥) = 𝐶𝐶𝑐𝑐𝐴𝐴𝐴𝐴(𝜇𝜇𝑥𝑥) + 𝐷𝐷𝐴𝐴𝑚𝑚𝑚𝑚(𝜇𝜇𝑥𝑥).  (93) 
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 We apply the boundary conditions of the system (91) for the eigen function 
𝑋𝑋2(𝑥𝑥) which take the following form: 
 

𝑋𝑋2(0) = 0, 𝑘𝑘2𝑋𝑋2′(𝑙𝑙 − 𝜉𝜉) + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑋𝑋2(𝑙𝑙 − 𝜉𝜉) = 0.   (94) 
 
 Received boundary conditions are observed along with the following identity for 
eigenfunction derivative: 
 

𝑋𝑋2′(𝑥𝑥) = −𝐶𝐶𝜇𝜇 sin(𝜇𝜇𝑥𝑥) + 𝐷𝐷𝜇𝜇 cos(𝜇𝜇𝑥𝑥).    (95) 
  
 So that our initial system could be rewritten as: 
 

С = 0, 𝑘𝑘2𝐷𝐷𝜇𝜇 cos�𝜇𝜇(𝑙𝑙 − 𝜉𝜉)� + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝐷𝐷𝐴𝐴𝑚𝑚𝑚𝑚�𝜇𝜇(𝑙𝑙 − 𝜉𝜉)� = 0.  (96) 
 
 Due to nontriviality principle, we consider the case when 𝐷𝐷 ≠ 0 for our solution. 
Thus, it follows that: 
 

𝑘𝑘2𝜇𝜇 cos�𝜇𝜇(𝑙𝑙 − 𝜉𝜉)� + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝐴𝐴𝑚𝑚𝑚𝑚�𝜇𝜇(𝑙𝑙 − 𝜉𝜉)� = 0.   (97) 
 

Rewriting the (97) into equivalent form, we obtain the following transcendental 
equation: 
 

𝑡𝑡𝑡𝑡�𝜇𝜇(𝑙𝑙 − 𝜉𝜉)� = − 𝑘𝑘2𝜇𝜇
ℎ𝑜𝑜𝑜𝑜𝑡𝑡

.       (98) 
 

We may solve (98) numerically, in order to obtain the set of eigenvalues 
𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑛𝑛, which will construct the following set of eigenfunctions 
 

𝑋𝑋1 = sin[𝜇𝜇1𝑥𝑥] ,𝑋𝑋2 = sin[𝜇𝜇2𝑥𝑥] , …     (99) 
 

Therefore, the solution of (91) will take the following form: 
 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) = ∑ 𝐷𝐷𝑛𝑛𝑒𝑒−𝜇𝜇𝑖𝑖
2𝛼𝛼22𝜕𝜕 sin[𝜇𝜇𝑛𝑛𝑥𝑥]∞

𝑛𝑛=1 , 𝑥𝑥 ∈ (0, 𝑙𝑙 − 𝜉𝜉).  (100) 
 

Furthermore, we pose our third lemma to verify if the constructed system of 
eigenfunctions {sin(𝜇𝜇𝑛𝑛𝑥𝑥)} will be orthogonal on 𝑥𝑥 ∈ (0, 𝑙𝑙 − 𝜉𝜉).  

Theorem of Rysbaiuly – Sinitsa. The eigenfunction system 𝑋𝑋𝑛𝑛 = {sin(𝜇𝜇𝑛𝑛𝑥𝑥)} 
is orthogonal on 𝑥𝑥 ∈ (0, 𝑙𝑙 − 𝜉𝜉), ∀𝑚𝑚,𝑚𝑚 ∈ 𝑍𝑍 provides convergency of the series (100). 

Proof. We approach the proof of proposed lemma through the definition of 
𝑋𝑋𝑛𝑛(𝑥𝑥) and 𝑋𝑋𝑚𝑚(𝑥𝑥), which state that they should satisfy to the following system of 
equations: 

 

� 𝑋𝑋𝑛𝑛
′′ + 𝜆𝜆𝑛𝑛2𝑋𝑋𝑛𝑛 = 0,

𝑋𝑋𝑚𝑚′′ + 𝜆𝜆𝑚𝑚2 𝑋𝑋𝑚𝑚 = 0.
       (101) 
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 Here we perform similar manipulation with obtained system, so that we multiply 
the first equation by 𝑋𝑋𝑚𝑚(𝑥𝑥), and the second equations by 𝑋𝑋𝑛𝑛(𝑥𝑥) and then we subtract 
second equation from the first one, which gives us the following identity: 
 

(𝜆𝜆𝑛𝑛2 − 𝜆𝜆𝑚𝑚2 )𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥) = 𝜆𝜆𝑚𝑚𝑋𝑋𝑛𝑛′′ − 𝜆𝜆𝑛𝑛𝑋𝑋𝑚𝑚′′ .    (102) 
 

Equation above is equivalent to the following expression by analogy to the first 
sub-domain: 
 

(𝜆𝜆𝑛𝑛2 − 𝜆𝜆𝑚𝑚2 )𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥) = (𝜆𝜆𝑚𝑚𝑋𝑋𝑛𝑛′ − 𝜆𝜆𝑛𝑛𝑋𝑋𝑚𝑚′ )′.   (103) 
 
 Furthermore, we integrate the equation (103) along the spatial variable 𝑥𝑥 from 0 
to l − ξ: 
 

(𝜆𝜆𝑛𝑛2 − 𝜆𝜆𝑚𝑚2 )�𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝑧𝑧𝑥𝑥

𝜉𝜉

0

= (𝜆𝜆𝑚𝑚𝑋𝑋𝑛𝑛′ − 𝜆𝜆𝑛𝑛𝑋𝑋𝑚𝑚′ )|0
𝑙𝑙−𝜉𝜉 = 

 
= 𝑋𝑋𝑚𝑚(𝑙𝑙 − 𝜉𝜉)𝑋𝑋𝑛𝑛′ (𝑙𝑙 − 𝜉𝜉) − 𝑋𝑋𝑛𝑛(𝑙𝑙 − 𝜉𝜉)𝑋𝑋𝑚𝑚′ (𝑙𝑙 − 𝜉𝜉) − 

 
−𝑋𝑋𝑚𝑚(0)𝑋𝑋𝑛𝑛′ (0) + 𝑋𝑋𝑛𝑛𝑋𝑋𝑚𝑚′ (0).   (104) 

 
 For both families of derived eigenfunctions 𝑋𝑋𝑛𝑛(𝑥𝑥) and 𝑋𝑋𝑚𝑚(𝑥𝑥) there are the 
following boundary conditions from initial system of equations (47), i.e.: 
 

�
𝑋𝑋𝑛𝑛(0) = 0, 𝑋𝑋𝑚𝑚(0) = 0,

𝑋𝑋𝑛𝑛′ (𝑙𝑙 − 𝜉𝜉) = −ℎ𝑜𝑜𝑜𝑜𝑡𝑡
𝑘𝑘2

𝑋𝑋𝑛𝑛(𝑙𝑙 − 𝜉𝜉),𝑋𝑋𝑚𝑚′ (𝑙𝑙 − 𝜉𝜉) = −ℎ𝑜𝑜𝑜𝑜𝑡𝑡
𝑘𝑘2

𝑋𝑋𝑚𝑚(𝑙𝑙 − 𝜉𝜉).  (105) 

 
 By observing the integral relation (104) along with the boundary conditions 
(105), we will deduce the following identity: 
 

(𝜆𝜆𝑛𝑛2 − 𝜆𝜆𝑚𝑚2 )�𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝑧𝑧𝑥𝑥

𝜉𝜉

0

= (𝜆𝜆𝑚𝑚𝑋𝑋𝑛𝑛′ − 𝜆𝜆𝑛𝑛𝑋𝑋𝑚𝑚′ )|0
𝑙𝑙−𝜉𝜉 = 

= −𝑋𝑋𝑚𝑚(𝑙𝑙 − 𝜉𝜉) ℎ𝑜𝑜𝑜𝑜𝑡𝑡
𝑘𝑘2

𝑋𝑋𝑛𝑛(𝑙𝑙 − 𝜉𝜉) + 𝑋𝑋𝑛𝑛(𝑙𝑙 − 𝜉𝜉) ℎ𝑜𝑜𝑜𝑜𝑡𝑡
𝑘𝑘2

𝑋𝑋𝑚𝑚(𝑙𝑙 − 𝜉𝜉) = 0.  (106) 
 
 Now, by considering the case when 𝜆𝜆𝑛𝑛 ≠ 𝜆𝜆𝑚𝑚 we will see that indeed the system 
is orthogonal and: 
 

∫ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝜉𝜉
0 = 0.      (107) 

∎ 
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Now, by using the last observations, we may evaluate this integral as the 
following norm: 
 

‖𝑋𝑋𝑛𝑛‖2 = ∫ 𝑋𝑋𝑛𝑛2(𝑥𝑥)𝑧𝑧𝑥𝑥𝜉𝜉
0 = ∫ sin2[𝜇𝜇𝑛𝑛𝑥𝑥]𝑧𝑧𝑥𝑥𝑙𝑙−𝜉𝜉

0 .    (108) 
 
 By analogy to the first sub-domain, we imply the order reduction formula, and 
deduce the following integral expression: 
 

‖𝑋𝑋𝑛𝑛‖2 =
1
2�

(1 − cos(2𝜇𝜇𝑛𝑛𝑥𝑥))𝑧𝑧𝑥𝑥

𝑙𝑙−𝜉𝜉

0

=
1
2 �𝑥𝑥 −

2
2𝜇𝜇𝑛𝑛

sin(2𝜇𝜇𝑛𝑛𝑥𝑥)� |0
𝑙𝑙−𝜉𝜉 = 

= 1
2
�𝑙𝑙 − 𝜉𝜉 − 1

𝜇𝜇𝑖𝑖
sin�2𝜇𝜇𝑛𝑛(𝑙𝑙 − 𝜉𝜉)��.     (109) 

 
 At this point, we shall take into account the following trigonometrical identity to 
express (109) in accordance with the transcendental equation (98): 
 

sin�2𝜇𝜇𝑛𝑛(𝑙𝑙 − 𝜉𝜉)� = 2 sin�𝜇𝜇𝑛𝑛(𝑙𝑙 − 𝜉𝜉)� 𝑐𝑐𝐴𝐴𝐴𝐴�𝜇𝜇𝑛𝑛(𝑙𝑙 − 𝜉𝜉)� = 2𝜕𝜕𝑡𝑡�𝜇𝜇𝑖𝑖(𝑙𝑙−𝜉𝜉)�
1+𝜕𝜕𝑡𝑡2�𝜇𝜇𝑖𝑖(𝑙𝑙−𝜉𝜉)�

. (110) 

 
 By applying the (98) towards (110) we will derive the computational formula of 
the norm of ‖𝑋𝑋𝑛𝑛‖2 as: 
 

‖𝑋𝑋𝑛𝑛‖2 = 1
2

(𝑙𝑙 − 𝜉𝜉) + 𝑘𝑘2

𝑘𝑘2�1+�
𝑘𝑘2𝜇𝜇𝑖𝑖
ℎ𝑜𝑜𝑜𝑜𝑡𝑡

�
2
�

= 𝐶𝐶𝑛𝑛, 𝑚𝑚 = 1,2, …  (111) 

 
 Furthermore, in order to determine the coefficients 𝐷𝐷𝑛𝑛 we shall use the identity 
(100) and take for consideration the case when 𝑡𝑡 = 0, that will give us the following 
identity: 

 
𝑣𝑣(𝑥𝑥, 0) = ∑ 𝐷𝐷𝑛𝑛 sin(𝜇𝜇𝑛𝑛𝑥𝑥)∞

𝑛𝑛=1 , 𝑥𝑥 ∈ (0, 𝑙𝑙 − 𝜉𝜉).   (112) 
 
 From another point of view, we recall our initial substitution 𝑣𝑣(𝑥𝑥, 0) = 𝑢𝑢0 −
𝛽𝛽 − 𝛽𝛽1𝑥𝑥 and conclude that: 
 

∫ (𝑢𝑢0(𝑥𝑥)− 𝛽𝛽 − 𝛽𝛽1𝑥𝑥)𝐴𝐴𝑚𝑚𝑚𝑚(𝜇𝜇𝑛𝑛𝑥𝑥)𝑧𝑧𝑥𝑥𝑙𝑙−𝜉𝜉
0 = 𝐶𝐶𝑛𝑛𝐷𝐷𝑛𝑛.   (113) 

 
That is the computational formula explicitly derived for the coefficient 𝐷𝐷𝑛𝑛 as: 

 
𝐷𝐷𝑛𝑛 = 1

𝐶𝐶𝑖𝑖
∫ (𝑢𝑢0(𝑥𝑥)− 𝛽𝛽 − 𝛽𝛽1𝑥𝑥)𝐴𝐴𝑚𝑚𝑚𝑚(𝜇𝜇𝑛𝑛𝑥𝑥)𝑧𝑧𝑥𝑥𝑙𝑙−𝜉𝜉
0 , 𝑚𝑚 = 1,2, …  (114) 
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Due to our substitution for spatial variable �̅�𝑥 = 𝑥𝑥 − 𝜉𝜉, we shall perform the 
backward substitution via 𝑥𝑥 = �̅�𝑥 + 𝜉𝜉,which will give us the following computational 
formula: 
 

𝐷𝐷𝑛𝑛 = 1
𝐶𝐶𝑖𝑖
∫ (𝑢𝑢0(𝑥𝑥) − 𝛽𝛽 − 𝛽𝛽1𝑥𝑥)𝐴𝐴𝑚𝑚𝑚𝑚(𝜇𝜇𝑛𝑛𝑥𝑥)𝑧𝑧𝑥𝑥𝑙𝑙
𝜉𝜉 , 𝑚𝑚 = 1,2, …   (115) 

 
 Having the derived expressions, we may present further the algorithm for the 
analytical evaluation of the initial problem statement for temperature field. 
 Algorithm 1. 

Step 1. Initially we shall perform the homogenization by computing the 
coefficients by the set of formulas: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝛾𝛾 = 𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖+𝜕𝜕𝜉𝜉𝑘𝑘1

𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1
,

𝛾𝛾1 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖�𝜕𝜕𝜉𝜉−𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖�
𝜉𝜉ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1

,

𝛽𝛽 = 𝜕𝜕𝜉𝜉𝑘𝑘2+ℎ𝑜𝑜𝑜𝑜𝑡𝑡�𝜕𝜕𝜉𝜉𝐿𝐿−𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝜉𝜉�
𝑘𝑘2+ℎ𝑜𝑜𝑜𝑜𝑡𝑡(𝐿𝐿−𝜉𝜉)

,

𝛽𝛽1 = ℎ𝑜𝑜𝑜𝑜𝑡𝑡�𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡−𝜕𝜕𝜉𝜉�
𝑘𝑘2+ℎ𝑜𝑜𝑜𝑜𝑡𝑡(𝐿𝐿−𝜉𝜉)

.

     (116) 

 
Step 2. We are solving numerically the following transcendental equations and 

obtain two sets of eigenvalues 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 and  𝜇𝜇1,𝜇𝜇2, … ,𝜇𝜇𝑛𝑛: 
 

�
𝑡𝑡𝑎𝑎𝑚𝑚[𝜆𝜆𝑛𝑛𝜉𝜉] = −𝑘𝑘1𝜆𝜆𝑖𝑖

ℎ𝑖𝑖𝑖𝑖𝑖𝑖
,

𝑡𝑡𝑎𝑎𝑚𝑚�𝜇𝜇(𝑙𝑙 − 𝜉𝜉)� = − 𝑘𝑘2𝜇𝜇
ℎ𝑜𝑜𝑜𝑜𝑡𝑡

.
     (117) 

  
Step 3. We shall compute the norm of the eigenfunctions of the first and 

second problem via formulas: 
 

⎩
⎨

⎧ �𝑋𝑋1,𝑛𝑛�
2 = 𝐴𝐴𝑛𝑛 = 𝜉𝜉

2
�𝑘𝑘1𝜆𝜆𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

�
2

+ 𝜉𝜉
2

+ 𝑘𝑘1
2ℎ𝑖𝑖𝑖𝑖𝑖𝑖

,

�𝑋𝑋2,𝑛𝑛�
2 = 𝐶𝐶𝑛𝑛 = 1

2
(𝑙𝑙 − 𝜉𝜉) + 𝑘𝑘2

𝑘𝑘2�1+�
𝑘𝑘2𝜇𝜇𝑖𝑖
ℎ𝑜𝑜𝑜𝑜𝑡𝑡

�
2
�
.
,𝑚𝑚 = 1,2, …   (118) 

 
 Step 4. After that we shall compute the following coefficients by integral 
relations: 
 

�
𝐵𝐵𝑛𝑛 = 1

𝐴𝐴𝑖𝑖
∫ (𝑢𝑢0(𝑥𝑥)− 𝛾𝛾 − 𝛾𝛾1𝑥𝑥) �𝑘𝑘1𝜆𝜆𝑖𝑖

ℎ𝑖𝑖𝑖𝑖𝑖𝑖
cos(𝜆𝜆𝑛𝑛𝑥𝑥) + sin(𝜆𝜆𝑛𝑛𝑥𝑥)�𝑧𝑧𝑥𝑥,𝜉𝜉

0

𝐷𝐷𝑛𝑛 = 1
𝐶𝐶𝑖𝑖
∫ (𝑢𝑢0(𝑥𝑥)− 𝛽𝛽 − 𝛽𝛽1𝑥𝑥)𝐴𝐴𝑚𝑚𝑚𝑚(𝜇𝜇𝑛𝑛𝑥𝑥)𝑧𝑧𝑥𝑥.𝑙𝑙
𝜉𝜉

,𝑚𝑚 = 1,2, … 

            (119) 
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 Step 5. Afterwards, we are ready to evaluate the solutions for initial-boundary 
value problem (34) – (38) via the following computational formulas: 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 

=

⎩
⎪
⎨

⎪
⎧�𝐵𝐵𝑛𝑛𝑒𝑒−𝜆𝜆𝑖𝑖𝛼𝛼

2𝜕𝜕 �
𝑘𝑘1𝜆𝜆𝑛𝑛
ℎ𝑖𝑖𝑛𝑛𝑜𝑜

cos(𝜆𝜆𝑛𝑛𝑥𝑥) + sin(𝜆𝜆𝑛𝑛𝑥𝑥)�
∞

𝑛𝑛=1

+ 𝛾𝛾 + 𝛾𝛾1𝑥𝑥, 𝑥𝑥 ∈ (0, 𝜉𝜉), 𝑡𝑡 ∈ (0,𝑇𝑇𝑚𝑚),

�𝐷𝐷𝑛𝑛𝑒𝑒−𝜇𝜇𝑖𝑖
2𝛼𝛼22𝜕𝜕 sin(𝜇𝜇𝑛𝑛𝑥𝑥)

∞

𝑛𝑛=1

+ 𝛽𝛽 + 𝛽𝛽1𝑥𝑥, 𝑥𝑥 ∈ (𝜉𝜉, 𝑙𝑙)𝑡𝑡 ∈ (0,𝑇𝑇𝑚𝑚).

 

(120) 
 
 After derivation of the analytical solution for the direct problem is finished, we 
may start the procedure of derivation for the inverse problem analytical solution. Since 
the key problem formulation is to determine the unknown parameters via measured 
response of the system, we will formulate the system of nonlinear equations as follows: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑇𝑇1(𝑡𝑡𝑘𝑘) − ∑ 𝐵𝐵𝑛𝑛𝑒𝑒

−𝜆𝜆𝑖𝑖
𝑘𝑘1

𝜌𝜌1𝑐𝑐𝑝𝑝1
𝜕𝜕𝑘𝑘
𝑋𝑋𝑛𝑛(0)∞

𝑛𝑛=1 + 𝛾𝛾 = 𝑓𝑓(𝜌𝜌1),

𝑇𝑇1(𝑡𝑡𝑘𝑘+1) − ∑ 𝐵𝐵𝑛𝑛𝑒𝑒
−𝜆𝜆𝑖𝑖

𝑘𝑘1
𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝑘𝑘+1
𝑋𝑋𝑛𝑛(0)∞

𝑛𝑛=1 + 𝛾𝛾 = 𝑓𝑓 � 𝑐𝑐𝑝𝑝1� ,

𝑇𝑇1(𝑡𝑡𝑘𝑘+2) − ∑ 𝐵𝐵𝑛𝑛𝑒𝑒
−𝜆𝜆𝑖𝑖

𝑘𝑘1
𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝑘𝑘+2
𝑋𝑋𝑛𝑛(0)∞

𝑛𝑛=1 + 𝛾𝛾 = 𝑓𝑓(ℎ𝑖𝑖𝑛𝑛𝑜𝑜),

𝑇𝑇1(𝑡𝑡𝑘𝑘+3) − ∑ 𝐵𝐵𝑛𝑛𝑒𝑒
−𝜆𝜆𝑖𝑖

𝑘𝑘1
𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝑘𝑘+3
𝑋𝑋𝑛𝑛(0)∞

𝑛𝑛=1 + 𝛾𝛾 = 𝑓𝑓( 𝑘𝑘1).

→ 𝑚𝑚𝑚𝑚𝑚𝑚   (121) 

 
Where 𝑡𝑡𝑘𝑘 ∈ (𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) is the time partition for our received measurements, which 

at the same time could be observed in the frequency domain. By prescribing the 
corresponding accuracy and measurement device position, - that is also could be 
subject for determination via the optimal experiment design approach. The system 
(121) shall perceive the local convex properties, otherwise, we may apply the least 
square method. Right after evaluation of the first set of parameters, 𝜋𝜋1 we clarify them 
additionally by another optimization problem from the system with second device 
measurements: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑇𝑇2(𝑡𝑡𝑘𝑘) − ∑ 𝐵𝐵𝑛𝑛𝑒𝑒

−𝜆𝜆𝑖𝑖
𝑘𝑘1

𝜌𝜌1𝑐𝑐𝑝𝑝1
𝜕𝜕𝑘𝑘
𝑋𝑋𝑛𝑛(𝑥𝑥2)∞

𝑛𝑛=1 + 𝛾𝛾 + 𝛾𝛾1𝑥𝑥2 = 𝑓𝑓(𝜌𝜌1),

𝑇𝑇2(𝑡𝑡𝑘𝑘+1) − ∑ 𝐵𝐵𝑛𝑛𝑒𝑒
−𝜆𝜆𝑖𝑖

𝑘𝑘1
𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝑘𝑘+1
𝑋𝑋𝑛𝑛(𝑥𝑥2)∞

𝑛𝑛=1 + 𝛾𝛾 + 𝛾𝛾1𝑥𝑥2 = 𝑓𝑓 � 𝑐𝑐𝑝𝑝1� ,

𝑇𝑇2(𝑡𝑡𝑘𝑘+2) − ∑ 𝐵𝐵𝑛𝑛𝑒𝑒
−𝜆𝜆𝑖𝑖

𝑘𝑘1
𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝑘𝑘+2
𝑋𝑋𝑛𝑛(𝑥𝑥2)∞

𝑛𝑛=1 + 𝛾𝛾 + 𝛾𝛾1𝑥𝑥2 = 𝑓𝑓(ℎ𝑖𝑖𝑛𝑛𝑜𝑜),

𝑇𝑇2(𝑡𝑡𝑘𝑘+3) − ∑ 𝐵𝐵𝑛𝑛𝑒𝑒
−𝜆𝜆𝑖𝑖

𝑘𝑘1
𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝑘𝑘+3
𝑋𝑋𝑛𝑛(𝑥𝑥2)∞

𝑛𝑛=1 + 𝛾𝛾 + 𝛾𝛾1𝑥𝑥2 = 𝑓𝑓( 𝑘𝑘1).

→ 𝑚𝑚𝑚𝑚𝑚𝑚  

(122) 
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 Here, 𝑥𝑥2 – is the position of second device, that will be illustrated in validation 
part. Going further towards the third measurement device, we construct another system 
to perform the same procedure with 𝑥𝑥3 being the position of the third device: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑇𝑇3(𝑡𝑡𝑘𝑘) − ∑ 𝐷𝐷𝑛𝑛𝑒𝑒

−𝜇𝜇2
𝑘𝑘2

𝜌𝜌2𝑐𝑐𝑝𝑝2
𝜕𝜕𝑘𝑘

sin(𝜇𝜇2𝑥𝑥3)∞
𝑛𝑛=1 + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥3 = 𝑓𝑓(𝜌𝜌2),

𝑇𝑇3(𝑡𝑡𝑘𝑘+1) − ∑ 𝐷𝐷𝑛𝑛𝑒𝑒
−𝜇𝜇2

𝑘𝑘2
𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜕𝜕𝑘𝑘+1
sin(𝜇𝜇2𝑥𝑥3)∞

𝑛𝑛=1 + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥3 = 𝑓𝑓 � 𝑐𝑐𝑝𝑝2� ,

𝑇𝑇3(𝑡𝑡𝑘𝑘+2) − ∑ 𝐷𝐷𝑛𝑛𝑒𝑒
−𝜇𝜇2

𝑘𝑘2
𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜕𝜕𝑘𝑘+2
sin(𝜇𝜇2𝑥𝑥3)∞

𝑛𝑛=1 + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥3 = 𝑓𝑓(ℎ𝑜𝑜𝑜𝑜𝜕𝜕),

𝑇𝑇3(𝑡𝑡𝑘𝑘+3) − ∑ 𝐷𝐷𝑛𝑛𝑒𝑒
−𝜇𝜇2

𝑘𝑘2
𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜕𝜕𝑘𝑘+3
sin(𝜇𝜇2𝑥𝑥3)∞

𝑛𝑛=1 + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥3 = 𝑓𝑓( 𝑘𝑘2).

→ 𝑚𝑚𝑚𝑚𝑚𝑚 

            (123) 
 
 Which we also clarify by the measurements received from the fourth, last, device 
by: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑇𝑇4(𝑡𝑡𝑘𝑘) − ∑ 𝐷𝐷𝑛𝑛𝑒𝑒

−𝜇𝜇2
𝑘𝑘2

𝜌𝜌2𝑐𝑐𝑝𝑝2
𝜕𝜕𝑘𝑘

sin(𝜇𝜇2𝑥𝑥4)∞
𝑛𝑛=1 + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥4 = 𝑓𝑓(𝜌𝜌2),

𝑇𝑇4(𝑡𝑡𝑘𝑘+1) − ∑ 𝐷𝐷𝑛𝑛𝑒𝑒
−𝜇𝜇2

𝑘𝑘2
𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜕𝜕𝑘𝑘+1
sin(𝜇𝜇2𝑥𝑥4)∞

𝑛𝑛=1 + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥4 = 𝑓𝑓 � 𝑐𝑐𝑝𝑝2� ,

𝑇𝑇4(𝑡𝑡𝑘𝑘+2) − ∑ 𝐷𝐷𝑛𝑛𝑒𝑒
−𝜇𝜇2

𝑘𝑘2
𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜕𝜕𝑘𝑘+2
sin(𝜇𝜇2𝑥𝑥4)∞

𝑛𝑛=1 + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥4 = 𝑓𝑓(ℎ𝑜𝑜𝑜𝑜𝜕𝜕),

𝑇𝑇4(𝑡𝑡𝑘𝑘+3) − ∑ 𝐷𝐷𝑛𝑛𝑒𝑒
−𝜇𝜇2

𝑘𝑘2
𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜕𝜕𝑘𝑘+3
sin(𝜇𝜇2𝑥𝑥4)∞

𝑛𝑛=1 + 𝛽𝛽 + 𝛽𝛽1𝑥𝑥4 = 𝑓𝑓( 𝑘𝑘2).

→ 𝑚𝑚𝑚𝑚𝑚𝑚 

            (124) 
 
  

We perform the evaluation of all system parameters through the algorithm 1, and 
observe the pattern variations through each iteration, however, in order to determine 
the geometrical characteristic of the proposed system, we do the implementation of the 
contact condition, by obtaining additional convex function: 

 

�𝐷𝐷𝑛𝑛𝑒𝑒
−𝜆𝜆𝑖𝑖

𝑘𝑘2
𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜕𝜕𝑘𝑘+5
sin[𝜇𝜇2𝜉𝜉]

∞

𝑛𝑛=1

+ 𝛽𝛽 + 𝛽𝛽1𝜉𝜉 −�𝐵𝐵𝑛𝑛𝑒𝑒
−𝜆𝜆𝑖𝑖

𝑘𝑘1
𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝑘𝑘+5
𝑋𝑋𝑛𝑛(𝜉𝜉)

∞

𝑛𝑛=1

+ 𝛾𝛾 + 

+𝛾𝛾1𝜉𝜉 = 𝑓𝑓(𝜉𝜉) → 𝑚𝑚𝑚𝑚𝑚𝑚    (125) 
 
 Sequentially measuring the data over suitably selected positions, we are keen to 
avoid high level of fluctuations by computing the norms of the eigenfunctions at each 
iteration that we will present in the validation part of the thesis. 
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2.4 Analytical expressions for inverse analysis methodology derivation 
procedure for elasticity parameters in thermoelastic stress model. 

The received model (16) – (23) along with the expressions (52) – (53) are now 
suitable for determination of the physical parameters via the functional construction 
methodological approach due, since we have already demonstrated the reduction of 
dimensionality for the proposed thermoelastic process and its analytical solutions by 
(54) – (57). For that reason, we present (20) – (23) by analogy to (34) – (38) and 
construct the thermoelastic model together with mentioned above system of equations 
and expressions and set the additional information, measuring the temperatures at the 
inlet and outlet of our domain 𝑇𝑇|𝑚𝑚=0 = 𝑇𝑇𝑡𝑡1(𝑡𝑡) and 𝑇𝑇|𝑚𝑚=𝐿𝐿 = 𝑇𝑇𝑡𝑡2(𝑡𝑡). Afterwards we 
take initial approximation of observed coefficient at initialize zero iteration, i.e., 𝑘𝑘0. It 
will allow to construct the auxiliary problem by observing fluctuation at neighbor 
iterations, i.e., ∆𝑇𝑇 = 𝑇𝑇𝑛𝑛+1 − 𝑇𝑇𝑛𝑛, which will take the form: 

 
𝜌𝜌𝑐𝑐 𝜕𝜕∆𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕

𝜕𝜕𝑚𝑚
(∆𝛿𝛿).      (126) 

 
∆𝛿𝛿|𝑚𝑚=0 = ℎ𝑜𝑜𝑜𝑜𝜕𝜕(∆𝑇𝑇)|𝑚𝑚=0.     (127) 

 
∆𝛿𝛿|𝑚𝑚=𝐿𝐿 = −ℎ𝑖𝑖𝑛𝑛𝑜𝑜(∆𝑇𝑇)|𝑚𝑚=𝐿𝐿.    (128) 

 
∆𝑇𝑇|𝜕𝜕=0 = 0.       (129) 

 
 Here, we have introduced the heat flux 𝛿𝛿 = 𝑘𝑘 𝜕𝜕𝜕𝜕

𝜕𝜕𝑚𝑚
. Afterwards we proceed to the 

key part of suggested methodology, construction of the Pre-Hilbert space via the 
following inner product: 
 

< 𝑓𝑓,𝑡𝑡 > = ∫ ∫ (𝑓𝑓 × 𝑡𝑡)𝜕𝜕∗
0 𝑧𝑧𝑡𝑡𝐿𝐿

0 𝑧𝑧𝑥𝑥.   (130) 
 

 By using the inner product above, we apply it towards (126) – (129) via scalarly 
multiplying the governing equation of the auxiliary problem (126) by arbitrary 
continuously differentiable function 𝜓𝜓(𝑥𝑥, 𝑡𝑡) and integrate the received product along 
the whole region 𝑄𝑄 = [0, 𝑡𝑡∗] × [0, 𝐿𝐿]: 
  

< 𝜌𝜌𝑐𝑐 𝜕𝜕∆𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜓𝜓 > = < 𝜕𝜕∆𝛿𝛿
𝜕𝜕𝑚𝑚

,𝜓𝜓 >.    (131) 
 
 We observe an expression (131) as the definite iterated integral relation, that 
could be opened by applying the integration by parts formulas: 
 

< 𝜌𝜌𝑐𝑐 𝜕𝜕∆𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜓𝜓 > = < ∆𝑇𝑇,𝜌𝜌𝑐𝑐𝜓𝜓 > |0
𝜕𝜕∗− < ∆𝑇𝑇,𝜌𝜌𝑐𝑐 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
>. (132) 
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 Here we are posing the hypothesis that will be used later in derivation of the 
conjugate problem, that is: 𝜓𝜓|𝜕𝜕=𝜕𝜕𝑚𝑚 = 𝜓𝜓(𝑥𝑥,𝑇𝑇𝑚𝑚) = 0. Now, by taking into account the 
condition (129), our integral relation (132) will take the form: 
 

< 𝜌𝜌𝑐𝑐 𝜕𝜕∆𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜓𝜓 > = − < ∆𝑇𝑇, 𝜌𝜌𝑐𝑐 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

>.    (133) 
 
 Analogically to above procedure, we evaluate the right side of the expression 
(131): 
 

< 𝜕𝜕∆𝛿𝛿
𝜕𝜕𝑚𝑚

,𝜓𝜓 > = < ∆𝛿𝛿,𝜓𝜓 > |0𝐿𝐿− < ∆𝛿𝛿, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

>.   (134) 
 
 Afterwards, we use the auxiliary problem conditions (127) – (128) and obtain: 
 

< ∆𝛿𝛿,𝜓𝜓 > |0𝐿𝐿 =< ∆𝛿𝛿,𝜓𝜓 > |𝑚𝑚=𝐿𝐿−< ∆𝛿𝛿,𝜓𝜓 > |𝑚𝑚=0 = 
 

= −< ℎ𝑖𝑖𝑛𝑛𝑜𝑜(∆𝑇𝑇),𝜓𝜓 > |𝑚𝑚=𝐿𝐿− < ℎ𝑜𝑜𝑜𝑜𝜕𝜕(∆𝑇𝑇),𝜓𝜓 > |𝑚𝑚=0. (135) 
 
 At this point, we shall imply the following algebraic identity in order to 
investigate the heat flux at neighbor iterations: 
 
∆𝛿𝛿 = 𝜆𝜆𝑛𝑛+1

𝜕𝜕𝜕𝜕𝑖𝑖+1
𝜕𝜕𝑚𝑚

− 𝜆𝜆𝑛𝑛
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑚𝑚

+ 𝜆𝜆𝑛𝑛
𝜕𝜕𝜕𝜕𝑖𝑖+1
𝜕𝜕𝑚𝑚

− 𝜆𝜆𝑛𝑛
𝜕𝜕𝜕𝜕𝑖𝑖+1
𝜕𝜕𝑚𝑚

= ∆𝜆𝜆 𝜕𝜕𝜕𝜕𝑖𝑖+1
𝜕𝜕𝑚𝑚

+ 𝜆𝜆𝑛𝑛
𝜕𝜕∆𝜕𝜕
𝜕𝜕𝑚𝑚

.  (136) 
 
 Applying above identity towards the integral relation (134), we may alter it and 
obtain the following expression: 
 
− < ∆𝛿𝛿, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
> =  −< ∆𝜆𝜆 𝜕𝜕𝜕𝜕𝑖𝑖+1

𝜕𝜕𝑚𝑚
+ 𝜆𝜆𝑛𝑛

𝜕𝜕∆𝜕𝜕
𝜕𝜕𝑚𝑚

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

> =  − < ∆𝜆𝜆 𝜕𝜕𝜕𝜕𝑖𝑖+1
𝜕𝜕𝑚𝑚

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

> −  
 

− < 𝜆𝜆𝑛𝑛
𝜕𝜕∆𝑇𝑇
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > = − < ∆𝜆𝜆

𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 >  − 

 
− < ∆𝑇𝑇, 𝜆𝜆𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

> |𝑚𝑚=𝐿𝐿 + < ∆𝑇𝑇, 𝜆𝜆𝑛𝑛
𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

> |𝑚𝑚=0 + + < ∆𝑇𝑇, 𝜕𝜕
𝜕𝜕𝑚𝑚
�𝜆𝜆𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
� >.  

            (137) 
 From this point we combine together above relations and plug them back in 
(133): 
 

− < ∆𝑇𝑇, 𝜌𝜌𝑐𝑐
𝜕𝜕𝜓𝜓
𝜕𝜕𝑡𝑡 > = < ∆𝑇𝑇,

𝜕𝜕
𝜕𝜕𝑥𝑥 �𝜆𝜆𝑛𝑛

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥� >  − < ∆𝑇𝑇, 𝜆𝜆𝑛𝑛

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > |𝑚𝑚=𝐿𝐿 + 

 

+ < ∆𝑇𝑇, 𝜆𝜆𝑛𝑛
𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > |𝑚𝑚=0− < ∆𝜆𝜆

𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > − 
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−< ℎ𝑖𝑖𝑛𝑛𝑜𝑜(∆𝑇𝑇),𝜓𝜓 > |𝑚𝑚=𝐿𝐿− < ℎ𝑜𝑜𝑜𝑜𝜕𝜕(∆𝑇𝑇),𝜓𝜓 > |𝑚𝑚=0.  (138) 
 
 Simultaneously, the derived expression (132) has another equivalent form: 
 

−  �� �∆𝑇𝑇, 𝜌𝜌𝑐𝑐
𝜕𝜕𝜓𝜓
𝜕𝜕𝑡𝑡 �

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡
𝐿𝐿

0

𝑧𝑧𝑥𝑥 =  �� �∆𝑇𝑇,
𝜕𝜕
𝜕𝜕𝑥𝑥 �𝜆𝜆𝑛𝑛

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥��

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡
𝐿𝐿

0

𝑧𝑧𝑥𝑥 − 

 

−� �∆𝑇𝑇, 𝜆𝜆𝑛𝑛
𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥� |𝑚𝑚=𝐿𝐿

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡 +  � �∆𝑇𝑇, 𝜆𝜆𝑛𝑛
𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥� |𝑚𝑚=0

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡 −  �� �∆𝜆𝜆
𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥�

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡
𝐿𝐿

0

𝑧𝑧𝑥𝑥

− 
 

−∫ (ℎ𝑖𝑖𝑛𝑛𝑜𝑜(∆𝑇𝑇),𝜓𝜓)|𝑚𝑚=𝐿𝐿
𝜕𝜕𝑚𝑚
0 𝑧𝑧𝑡𝑡 − ∫ (ℎ𝑜𝑜𝑜𝑜𝜕𝜕(∆𝑇𝑇),𝜓𝜓)|𝑚𝑚=0

𝜕𝜕𝑚𝑚
0 𝑧𝑧𝑡𝑡. 

          (139) 
 
 Further step is to collect all similar terms of the received integral relation and to 
set another working hypothesis 𝜓𝜓|𝜕𝜕=𝜕𝜕𝑚𝑚 = 𝜓𝜓(𝑥𝑥,𝑇𝑇𝑚𝑚) = 0, after that it will follow that:
  
 

−  �� �∆𝑇𝑇, 𝜌𝜌𝑐𝑐
𝜕𝜕𝜓𝜓
𝜕𝜕𝑡𝑡 +

𝜕𝜕
𝜕𝜕𝑥𝑥 �𝜆𝜆𝑛𝑛

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥��

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡
𝐿𝐿

0

𝑧𝑧𝑥𝑥 + �� �∆𝜆𝜆
𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥�

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡
𝐿𝐿

0

𝑧𝑧𝑥𝑥 + 

 

+ � �∆𝑇𝑇, 𝜆𝜆𝑛𝑛
𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 + ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝜓𝜓� |𝑚𝑚=𝐿𝐿

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡 + 

 
+∫ �∆𝑇𝑇,ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝜓𝜓 − 𝜆𝜆𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
� |𝑚𝑚=0

𝜕𝜕𝑚𝑚
0 𝑧𝑧𝑡𝑡 =  0.  (140) 

 
 From above equation we see that the left part will be equal to zero only under 
the following circumstances: 
 

𝜌𝜌𝑐𝑐 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑚𝑚
�𝜆𝜆𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
� = 0 .     (141) 

 
�ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝜓𝜓 − 𝜆𝜆𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
� |𝑚𝑚=0 = 2�𝑇𝑇 − 𝑇𝑇𝑡𝑡1(𝑡𝑡)�|𝑚𝑚=0.  (142) 

 
�ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝜓𝜓 + 𝜆𝜆𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
� |𝑚𝑚=𝐿𝐿 = 2�𝑇𝑇 − 𝑇𝑇𝑡𝑡2(𝑡𝑡)�|𝑚𝑚=𝐿𝐿.  (143) 

 
𝜓𝜓|𝜕𝜕=𝜕𝜕𝑚𝑚 = 𝜓𝜓(𝑥𝑥,𝑇𝑇𝑚𝑚) = 0.      (144) 
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 The built conjugate model above may be solved numerically or analytically 
further by analogy to other models discussed in this thesis. We will present major notes 
on analytical investigations of the discussed model in the Appendix A. Even by 
satisfying above system (141) – (142), the left part may not be nulled if one more 
condition would not be achieved, that is the following hypothesis: 
 

�� �−∆𝜆𝜆
𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥�

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡
𝐿𝐿

0

𝑧𝑧𝑥𝑥 =< −∆𝜆𝜆
𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > = 

 
= 2(< ∆𝑇𝑇,𝑇𝑇 − 𝑇𝑇𝑡𝑡2 > |𝑚𝑚=𝐿𝐿−< ∆𝑇𝑇,𝑇𝑇 − 𝑇𝑇𝑡𝑡1 > |𝑚𝑚=0).  (145) 

 
 By observing the above assumption, we may set up the following functional 
mappings, that are depicting the minimization of the error between computed and 
measured values: 
 

�
𝐽𝐽1(𝜆𝜆) = ∫ (𝑇𝑇(0, 𝑡𝑡) − 𝑇𝑇𝑡𝑡1)2𝑧𝑧𝑡𝑡𝜕𝜕𝑚𝑚

0 ,

𝐽𝐽2(𝜆𝜆) = ∫ (𝑇𝑇(𝐿𝐿, 𝑡𝑡) − 𝑇𝑇𝑡𝑡2)2𝑧𝑧𝑡𝑡𝜕𝜕𝑚𝑚
0 .

   (146) 

  
The set mappings describe the potential energy surface for considered dynamical 

system in terms of the thermal conductivity coefficient through the temperature field, 
however, by analogical procedure, we may derive such mapping in other coefficients 
terms. By finding the absolute minimum of the functional, we will evaluate the state of 
equilibrium of considered dynamical system, which is reflecting the proper allocation 
of determined coefficients. The minimization could be performed by posing the 
monotonous decreasing condition over the functionals, such that they will satisfy to the 
following inequalities: 𝐽𝐽1,2(𝜆𝜆𝑛𝑛+1) − 𝐽𝐽1,2(𝜆𝜆𝑛𝑛) ≤ 0 → 𝐽𝐽1,2(𝜆𝜆𝑛𝑛+1) ≤ 𝐽𝐽1,2(𝜆𝜆𝑛𝑛). For that 
reason, in order to achieve such conditions, we consider the increment of the 
functionals over neighbor iterations for the first functional: 
 

∆𝐽𝐽1 = 𝐽𝐽1(𝜆𝜆𝑛𝑛+1) − 𝐽𝐽1(𝜆𝜆𝑛𝑛) = 𝐽𝐽1𝑛𝑛+1 − 𝐽𝐽1𝑛𝑛 = 
 

= � (𝑇𝑇𝑛𝑛+1(0, 𝑡𝑡) − 𝑇𝑇𝑡𝑡1)2𝑧𝑧𝑡𝑡

𝜕𝜕𝑚𝑚

0

− � (𝑇𝑇𝑛𝑛(0, 𝑡𝑡) − 𝑇𝑇𝑡𝑡1)2𝑧𝑧𝑡𝑡

𝜕𝜕𝑚𝑚

0

= 

 
= |𝑎𝑎2 − 𝑏𝑏2 = 2𝑏𝑏(𝑎𝑎 − 𝑏𝑏) + (𝑎𝑎 − 𝑏𝑏)2| = 

 
= 2∫ (𝑇𝑇𝑛𝑛(0, 𝑡𝑡) − 𝑇𝑇𝑡𝑡1)∆𝑇𝑇(0, 𝑡𝑡)𝑧𝑧𝑡𝑡𝜕𝜕𝑚𝑚

0 + ∫ [∆𝑇𝑇(0, 𝑡𝑡)]2𝑧𝑧𝑡𝑡𝜕𝜕𝑚𝑚
0 .  (147) 
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 Analogically, we consider the same difference for the second functional, 
obtaining: 
 

∆𝐽𝐽2 = 𝐽𝐽2(𝜆𝜆𝑛𝑛+1) − 𝐽𝐽2(𝜆𝜆𝑛𝑛) = 𝐽𝐽2𝑛𝑛+1 − 𝐽𝐽2𝑛𝑛 = 
 

= � (𝑇𝑇𝑛𝑛+1(𝐿𝐿, 𝑡𝑡) − 𝑇𝑇𝑡𝑡2)2𝑧𝑧𝑡𝑡

𝜕𝜕𝑚𝑚

0

− � (𝑇𝑇𝑛𝑛(𝐿𝐿, 𝑡𝑡) − 𝑇𝑇𝑡𝑡2)2𝑧𝑧𝑡𝑡

𝜕𝜕𝑚𝑚

0

= 

 
= |𝑎𝑎2 − 𝑏𝑏2 = 2𝑏𝑏(𝑎𝑎 − 𝑏𝑏) + (𝑎𝑎 − 𝑏𝑏)2| = 

 
= 2∫ (𝑇𝑇𝑛𝑛(𝐿𝐿, 𝑡𝑡) − 𝑇𝑇𝑡𝑡2)∆𝑇𝑇(𝐿𝐿, 𝑡𝑡)𝑧𝑧𝑡𝑡𝜕𝜕𝑚𝑚

0 + ∫ [∆𝑇𝑇(𝐿𝐿, 𝑡𝑡)]2𝑧𝑧𝑡𝑡𝜕𝜕𝑚𝑚
0 . (148) 

 
 Comparing together expressions (147) and (148) along with the working 
hypothesis (39) we may notice that:  
  

�� �−∆𝜆𝜆
𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥�

𝜕𝜕𝑚𝑚

0

𝑧𝑧𝑡𝑡
𝐿𝐿

0

𝑧𝑧𝑥𝑥 =< −∆𝜆𝜆
𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > = 

 
= 𝐽𝐽2(𝜆𝜆𝑛𝑛+1) − 𝐽𝐽2(𝜆𝜆𝑛𝑛) − 𝐽𝐽1(𝜆𝜆𝑛𝑛+1) + 𝐽𝐽1(𝜆𝜆𝑛𝑛) − 

 
−< ∆𝑇𝑇,∆𝑇𝑇 > |𝑚𝑚=𝐿𝐿+< ∆𝑇𝑇,∆𝑇𝑇 > |𝑚𝑚=0.  (149) 

 
 In the equation (149) we open the term: ∆𝑇𝑇 = 𝑇𝑇𝑛𝑛+1 − 𝑇𝑇𝑛𝑛 → 𝑇𝑇𝑛𝑛+1 =  ∆𝑇𝑇 + 𝑇𝑇𝑛𝑛 
in this way, the expression will be altered to: 
 

∆𝜆𝜆 <
𝜕𝜕𝑇𝑇𝑛𝑛+1
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > = ∆𝜆𝜆 < −

𝜕𝜕𝑇𝑇𝑛𝑛
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > −∆𝜆𝜆 <

𝜕𝜕∆𝑇𝑇
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > + 

 
+< ∆𝑇𝑇,∆𝑇𝑇 > |𝑚𝑚=𝐿𝐿−< ∆𝑇𝑇,∆𝑇𝑇 > |𝑚𝑚=0 = 𝐽𝐽2(𝜆𝜆𝑛𝑛+1) − 

 
−𝐽𝐽2(𝜆𝜆𝑛𝑛)− 𝐽𝐽1(𝜆𝜆𝑛𝑛+1) + 𝐽𝐽1(𝜆𝜆𝑛𝑛).    (150) 

 
 By observing the above equation, we will note that to reach the minimum value 
of the posed functional, the left part of the above expression should be less than zero, 
for that reason we pose the inequality: 
 

−∆𝜆𝜆 <
𝜕𝜕𝑇𝑇𝑛𝑛
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > −∆𝜆𝜆 <

𝜕𝜕∆𝑇𝑇
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 > + 

 
+< ∆𝑇𝑇,∆𝑇𝑇 > |𝑚𝑚=𝐿𝐿−< ∆𝑇𝑇,∆𝑇𝑇 > |𝑚𝑚=0 ≤ 0.   (151) 
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 From above inequality, we may separately investigate the small quantities of 
higher orders: 
 

⎩
⎪
⎨

⎪
⎧ ∆𝜆𝜆 < 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑚𝑚
, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

>= 𝑘𝑘1,

∆𝜆𝜆 < 𝜕𝜕∆𝜕𝜕
𝜕𝜕𝑚𝑚

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

>= 𝑘𝑘2,
< ∆𝑇𝑇,∆𝑇𝑇 > |𝑚𝑚=𝐿𝐿 = 𝑘𝑘3,
< ∆𝑇𝑇,∆𝑇𝑇 > |𝑚𝑚=0 = 𝑘𝑘4.

     (152) 

 
 Here, the value of 𝑘𝑘1 is a small quantity of the first order, and all other quantities 
𝑘𝑘2,3,4 are the small quantities of the second order, thus the values of 𝑘𝑘1will prevail over 
the sign convention, so that is the value ∆𝜆𝜆 = 𝜆𝜆(𝑥𝑥)𝑛𝑛+1 − 𝜆𝜆(𝑥𝑥)𝑛𝑛 should be positive. 
Thus, we are deriving the following estimator: 
 

𝜆𝜆(𝑥𝑥)𝑛𝑛+1 = 𝜆𝜆(𝑥𝑥)𝑛𝑛 + 𝛾𝛾(𝑥𝑥)𝑛𝑛 ∫ ∫ 𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑚𝑚

𝜕𝜕𝑚𝑚
0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
𝑧𝑧𝑡𝑡𝐿𝐿

0 𝑧𝑧𝑥𝑥.  (153) 
 
 Here by the expression 𝛾𝛾(𝑥𝑥)𝑛𝑛 we have additionally introduced small quantity, 
which is at the same time represents the governing parameter in analogy to the gradient 
descent method, that should be appropriately sampled in order to satisfy the criteria of 
termination in iterative process, - it will allow us to determine the absolute value of the 
functional and satisfy the inequality (151). At the same time, in a case of non-
homogeneous structure of the considered medium, we may apply the additivity 
property of integral, and decompose our expression (153), such that it will be applied 
towards the multilayered structure, i.e., 𝑄𝑄 = ⋃ 𝑄𝑄𝑖𝑖𝑁𝑁

𝑖𝑖=1 : 
 

𝜆𝜆(𝑥𝑥)𝑛𝑛+1 = 𝜆𝜆(𝑥𝑥)𝑛𝑛 + +𝛾𝛾(𝑥𝑥)𝑛𝑛 ��
𝜕𝜕𝑇𝑇𝑛𝑛
𝜕𝜕𝑥𝑥

𝜕𝜕𝑚𝑚

0

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 𝑧𝑧𝑡𝑡

𝐿𝐿

0

𝑧𝑧𝑥𝑥𝜆𝜆(𝑥𝑥)𝑛𝑛 = 

 

= 𝜆𝜆(𝑥𝑥)𝑛𝑛 + 𝛾𝛾(𝑥𝑥)𝑛𝑛 � �
𝜕𝜕𝑇𝑇𝑛𝑛
𝜕𝜕𝑥𝑥

𝜕𝜕𝑚𝑚

0

𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥 𝑧𝑧𝑡𝑡

𝑙𝑙1

0

𝑧𝑧𝑥𝑥 + 

 
+𝛾𝛾(𝑥𝑥)𝑛𝑛 ∫ ∫ 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑚𝑚
𝜕𝜕𝑚𝑚
0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
𝑧𝑧𝑡𝑡𝑙𝑙2

𝑙𝑙1
𝑧𝑧𝑥𝑥 + ⋯+ 𝛾𝛾(𝑥𝑥)𝑛𝑛 ∫ ∫ 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑚𝑚
𝜕𝜕𝑚𝑚
0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
𝑧𝑧𝑡𝑡𝐿𝐿

𝑙𝑙𝑖𝑖−1
𝑧𝑧𝑥𝑥. (154) 

 
 By setting up the appropriate initial approximation, we may use the above 
recurrent relations and determine the conductivity coefficient iteratively. In a case of 
piece-wise constant function that represents the coefficient, we may separate above 
relation due to homogeneity of constructed functionаl by obtaining the below system 
of expressions: 
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⎩
⎪
⎨

⎪
⎧ 𝜆𝜆(𝑥𝑥)𝑛𝑛+1 = 𝜆𝜆(𝑥𝑥)𝑛𝑛 + 𝛾𝛾(𝑥𝑥)𝑛𝑛 ∫ ∫ 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑚𝑚
𝜕𝜕𝑚𝑚
0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
𝑧𝑧𝑡𝑡𝑙𝑙1

0 𝑧𝑧𝑥𝑥, 𝑥𝑥 ∈ [0, 𝑙𝑙1],

𝜆𝜆(𝑥𝑥)𝑛𝑛+1 = 𝜆𝜆(𝑥𝑥)𝑛𝑛 + 𝛾𝛾(𝑥𝑥)𝑛𝑛 ∫ ∫ 𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑚𝑚

𝜕𝜕𝑚𝑚
0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
𝑧𝑧𝑡𝑡𝑙𝑙2

𝑙𝑙1
𝑧𝑧𝑥𝑥, 𝑥𝑥 ∈ [𝑙𝑙1, 𝑙𝑙2],

⋮
𝜆𝜆(𝑥𝑥)𝑛𝑛+1 = 𝜆𝜆(𝑥𝑥)𝑛𝑛 + 𝛾𝛾(𝑥𝑥)𝑛𝑛 ∫ ∫ 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑚𝑚
𝜕𝜕𝑚𝑚
0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚
𝑧𝑧𝑡𝑡𝑙𝑙𝑁𝑁

𝑙𝑙𝑁𝑁−1
𝑧𝑧𝑥𝑥, 𝑥𝑥 ∈ [𝑙𝑙𝑁𝑁−1, 𝑙𝑙𝑁𝑁].

 (155) 

 
 In a case of the well-posedness of the proposed problem statement, we would 
apply the fundamental theorem of variational calculus and the condition of the 
existence of unique solution by investigation of the functional integrands in a form of 
the below system of differentiable functions with respect to the functional arguments: 
  
 

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆1 = 2[𝑇𝑇(0, 𝑡𝑡) − 𝑇𝑇𝑡𝑡1(𝑡𝑡)]2,

𝑆𝑆2 = 2[𝑇𝑇(𝐿𝐿, 𝑡𝑡) − 𝑇𝑇𝑡𝑡2(𝑡𝑡)]2,
𝜕𝜕𝑆𝑆1
𝜕𝜕𝜕𝜕

− 𝑑𝑑
𝑑𝑑𝜕𝜕

𝜕𝜕𝑆𝑆1
𝜕𝜕𝜕𝜕′

= 0 → 𝜕𝜕𝑆𝑆1
𝜕𝜕𝜕𝜕

= 0 → 4[𝑇𝑇(0, 𝑡𝑡) − 𝑇𝑇𝑡𝑡1(𝑡𝑡)] = 0,
𝜕𝜕𝑆𝑆2
𝜕𝜕𝜕𝜕

− 𝑑𝑑
𝑑𝑑𝜕𝜕

𝜕𝜕𝑆𝑆2
𝜕𝜕𝜕𝜕′

= 0 → 𝜕𝜕𝑆𝑆2
𝜕𝜕𝜕𝜕

= 0 → 4[𝑇𝑇(𝐿𝐿, 𝑡𝑡) − 𝑇𝑇𝑡𝑡2(𝑡𝑡)] = 0.

  (156) 

 
 However, by observing the above Lagrange-Euler equation we will see that the 
computed and measured temperature fields over the boundary points of domain should 
be equal, which is never true due to ill-posedness of the inverse problem, for instance 
because of the error introduced by the measurement device and so on. Further we are 
presenting the algorithm – 2, which will allow us to determine all necessary terms of 
the thermal elasticity model. 
 Algorithm 2. 
 Step 0. Initially, we have to introduce the material parameters in terms of thermal 
and elasticity properties, assuming the initial approximations as the assumptions, - here 
we shall pose the knowledge of the Poisson and linear expansion coefficients values.  

Step 1. Empirically, we introduce the small fluctuations by knowing the principal 
moments of the considered solid and measuring the appeared differences of the 
temperature field over the boundary points of investigated domain. 
 Step 2. Applying the recurrent relations, we may compute the thermal 
conductivity parameters along with the temperature field values using analytical 
expressions. 
 Step 3. Using the expression (18) we evaluate the Lame’s coefficient and further 
by the expression (19) we determine the Young’s modulus along with the cylindrical 
stiffness from the relation (17). 
 Step 4. Applying the Sophie-Germain equation we are adjusting the obtained 
results of coefficients via juxtaposing the bending moment for moderated fluctuation 
with measured and computed principal displacement values. 
 Step 5. Furthermore, we may proceed analyzing the thermal and elasticity 
parameters and validate the state of deterioration of structural material strength by 
comparing the evaluated data with the normative values. 
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3 TECHNICAL EXPERIMENTAL DESIGNS FOR VALIDATION OF 
DERIVED ANALYTICAL EXPRESSIONS FOR THE PROPOSED INVERSE 
ANALYSIS METHODOLOGY 
 
 Current chapter of the thesis intends to describe the major posed experimental 
designs to validate the received analytical expressions for the proposed inverse analysis 
methodology. We will separately present models and computational algorithms for 
each posed case study, like the heat and moisture transfer computer model, or the 
thermoelastic bending design, outlining the received results analysis. 
 

3.1 Experimental design for multilayered heat transfer in medium terrain 
for both homogenized and non-homogeneous measurements 
 In order to validate the algorithm – 1, we are proposing the following 
experimental design scheme for еру (34) – (38) model domain presented in the one-
dimensional form, two-layered medium terrain, introduced by Ω: (0, 𝜉𝜉) ∪ (𝜉𝜉, 𝐿𝐿) ×
(0, 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚) by the figure below: 
 

  
 

Figure 1 - Experimental design scheme 
 
 On the figure 1 we denote the measurement devices that sample data over 
investigated domain for two sets of parameters, where the geometrical characteristic 𝜉𝜉 
will be evaluated simultaneously by both sub-domain problems via the contact 
conditions: 
 

�
𝜋𝜋1 = �𝜌𝜌1, 𝑐𝑐𝑝𝑝1,ℎ𝑖𝑖𝑛𝑛𝑜𝑜 ,𝑘𝑘1, 𝜉𝜉� ,

𝜋𝜋2 = �𝜌𝜌2, 𝑐𝑐𝑝𝑝2,ℎ𝑜𝑜𝑜𝑜𝜕𝜕,𝑘𝑘2, 𝜉𝜉� .
    (157) 

 
 In order to perform the homogenization sufficiently, we shall specify the time partition for 
the ambient temperature being constant, where we may omit the fluctuations by observing that they 
are negligible. This partition scheme is illustrated below: 
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Figure 2 - Time domain decomposition scheme 

 

 Afterwards we may perform the algorithm 1 on each sub-division 𝑡𝑡𝑘𝑘 ∈ (𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) 
in order to iteratively compute parameters from the sets 𝜋𝜋1 and 𝜋𝜋2 one by one. To solve 
the system of nonlinear equations that we receive upon determination of unknown 
parameters, until we reach the following stop criteria: 

 

�𝑢𝑢(𝑥𝑥𝑚𝑚, 𝑡𝑡) − 𝑇𝑇𝑡𝑡𝑚𝑚(𝑡𝑡)� ≤ 𝑖𝑖.     (158) 
 

Here 𝑖𝑖 is the predefined accuracy, and 𝑥𝑥𝑚𝑚 – is the measurement device 
coordinate, meanwhile the term 𝑇𝑇𝑡𝑡𝑚𝑚(𝑡𝑡) – is the measured temperature. Right after 
perform of the algorithm – 1 by minimizing the expressions (120) – (124), we may 
verify the following eigenfunctions’ roots behavior to clarify their orthonormal 
tendency along with the Cauchy sequence behavior for the Fourier coefficients Bn(μn) 
for different roots of transcendental equation solutions: 
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Figure 3 - Eigenfunctions values distribution for posed direct problem (above), 
Fourier coefficient Bn(μn) (below) 

 

 The next step is to derive the analytical expressions, which are going to include 
the non-homogeneous sampling over the boundary regions, and for that reason we 
transfer the time domain into the frequency domain via the Laplace transform. For non-
homogenized samples we are decomposing the problem presented in the scheme on the 
figure 1 intro two sub-problems: 
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Figure 4 - Schemes of non-homogeneous problem decomposition 

 

 In the above formulation, we obtain two connected model:  

�
𝜕𝜕𝜃𝜃1
𝜕𝜕𝜕𝜕

= 𝑎𝑎1
𝜕𝜕2𝜃𝜃1
𝜕𝜕𝑚𝑚2

,
𝜕𝜕𝜃𝜃2
𝜕𝜕𝜕𝜕

= 𝑎𝑎2
𝜕𝜕2𝜃𝜃2
𝜕𝜕𝑚𝑚2

.
        (159) 

 

� 𝜃𝜃1
(𝑥𝑥, 0) = 𝜃𝜃0(𝑥𝑥), 𝑥𝑥 ∈ (0, 𝜉𝜉1),

𝜃𝜃2(𝑥𝑥, 0) = 𝜃𝜃0(𝑥𝑥), 𝑥𝑥 ∈ (𝜉𝜉1, 𝜉𝜉2).     (160) 

 

�
𝜃𝜃1(𝜉𝜉1, 𝑡𝑡) = 𝜃𝜃𝜉𝜉1(𝑡𝑡),
𝜃𝜃2(𝜉𝜉2, 𝑡𝑡) = 𝜃𝜃𝜉𝜉2(𝑡𝑡).       (161) 

 

�
−𝑘𝑘1

𝜕𝜕𝜃𝜃1(0,𝜕𝜕)
𝜕𝜕𝑚𝑚

= ℎ1�𝑇𝑇𝑎𝑎 − 𝜃𝜃1(0, 𝑡𝑡)�,

−𝑘𝑘2
𝜕𝜕𝜃𝜃2(0,𝜕𝜕)

𝜕𝜕𝑚𝑚
= 𝑞𝑞2.

      (162) 

 
 Here we introduce the dimensionless units: 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ �̅�𝑥1 = 𝑚𝑚

𝜉𝜉1
− 𝑧𝑧𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝑙𝑙𝑒𝑒𝐴𝐴𝐴𝐴 𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝑧𝑧𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒, �̅�𝑥1 ∈ [0,1],

�̅�𝑥2 = 𝑚𝑚
𝜉𝜉2
− 𝑧𝑧𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝑙𝑙𝑒𝑒𝐴𝐴𝐴𝐴 𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝑧𝑧𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒, �̅�𝑥2 ∈ [0,1],

𝐹𝐹𝐴𝐴1 = 𝑎𝑎1𝜕𝜕
𝜉𝜉12

,𝐹𝐹𝐴𝐴2 = 𝑘𝑘2𝜕𝜕
𝜌𝜌2𝑐𝑐𝑝𝑝2𝜉𝜉2

2 − 𝐹𝐹𝐴𝐴𝑢𝑢𝑐𝑐𝑚𝑚𝑒𝑒𝑐𝑐 𝑚𝑚𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑐𝑐,

𝐵𝐵𝑚𝑚1 = ℎ1𝜉𝜉1
𝜆𝜆1

,𝐵𝐵𝑚𝑚2 = ℎ2𝜉𝜉2
𝜆𝜆2

− 𝐵𝐵𝑚𝑚𝐴𝐴 𝑚𝑚𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑐𝑐,

�̅�𝜃1(�̅�𝑥1,𝐹𝐹𝐴𝐴1) =
𝜃𝜃1(𝑚𝑚1,𝜕𝜕)−𝜃𝜃𝜉𝜉1

𝜃𝜃𝜉𝜉1
, �̅�𝜃2(�̅�𝑥2,𝐹𝐹𝐴𝐴2) =

𝜃𝜃2(𝑚𝑚2,𝜕𝜕)−𝜃𝜃𝜉𝜉2
𝜃𝜃𝜉𝜉2

,

𝐾𝐾𝑚𝑚 = 𝑞𝑞2𝜉𝜉2
𝜆𝜆2𝜃𝜃𝜉𝜉2

− 𝐾𝐾𝑚𝑚𝑐𝑐𝑝𝑝𝑚𝑚𝑐𝑐ℎ𝑒𝑒𝑣𝑣′𝐴𝐴 𝑚𝑚𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑐𝑐.

  (163) 
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Using the above substitutions, we may transfer the model (159) – (162) to the 

following form: 
 

�

𝜕𝜕𝜃𝜃�1
𝜕𝜕𝜕𝜕𝑜𝑜1

= 𝜕𝜕2𝜃𝜃�1
𝜕𝜕�̅�𝑚12

,
𝜕𝜕𝜃𝜃�2
𝜕𝜕𝜕𝜕𝑜𝑜2

= 𝜕𝜕2𝜃𝜃�2
𝜕𝜕�̅�𝑚22

.
        (164) 

 

��̅�𝜃1
(�̅�𝑥1, 0) = �̅�𝜃0(�̅�𝑥1),

�̅�𝜃2(�̅�𝑥2, 0) = �̅�𝜃0(�̅�𝑥2).
       (165) 

 

�
�̅�𝜃1(1,𝐹𝐹𝐴𝐴1) = �̅�𝜃𝜉𝜉1(𝐹𝐹𝐴𝐴1),

�̅�𝜃2(1,𝐹𝐹𝐴𝐴2) = 0.
      (166) 

 

�

𝜕𝜕𝜃𝜃�1(0,𝜕𝜕𝑜𝑜1)
𝜕𝜕�̅�𝑚1

= 𝐵𝐵𝑚𝑚�̅�𝜃1(0,𝐹𝐹𝐴𝐴1),

−𝜕𝜕𝜃𝜃�2(0,𝜕𝜕𝑜𝑜)
𝜕𝜕�̅�𝑚2

= 𝐾𝐾𝑚𝑚.
       (167) 

 
 This approach allows us to use the solution of the first layer as the boundary 
measurement for the condition in the second problem, while the general solutions for 
both will take the following form in the frequency domain: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �̅�𝜃1(�̅�𝑥1,𝐹𝐹𝐴𝐴1) = �̅�𝜃𝜉𝜉1 �

𝐵𝐵𝑚𝑚�̅�𝑥1 + 1
𝐵𝐵𝑚𝑚 + 1 � − 2�

𝐵𝐵𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚(𝜇𝜇𝑛𝑛)(�̅�𝑥1 − 1)
𝐵𝐵𝑚𝑚 + cos2(𝜇𝜇𝑛𝑛) 𝑒𝑒−𝜇𝜇𝑖𝑖𝜕𝜕𝑜𝑜1

∞

𝑛𝑛=1

×

× �� �̅�𝜃0(𝜉𝜉1) sin�𝜇𝜇𝑛𝑛(1 − 𝜉𝜉1)�𝑧𝑧𝜉𝜉1 −
�̅�𝜃𝜉𝜉1
𝜇𝜇𝑛𝑛

1

0

� ,ℎ𝑒𝑒𝑐𝑐𝑒𝑒 𝜇𝜇𝑛𝑛 = 𝑡𝑡𝑎𝑎𝑚𝑚(𝜇𝜇𝑛𝑛′),𝜇𝜇𝑛𝑛′ = 𝑚𝑚�𝐴𝐴𝑛𝑛,

𝜃𝜃2�(𝑥𝑥2���, 𝐴𝐴) = 𝐴𝐴𝑐𝑐ℎ�𝑥𝑥2���√𝐴𝐴� + 𝐵𝐵𝐴𝐴ℎ�𝑥𝑥2���√𝐴𝐴� −
1
√𝐴𝐴

� �̅�𝜃0(𝜉𝜉)𝐴𝐴ℎ�√𝐴𝐴(𝑥𝑥2��� − 𝜉𝜉)�𝑧𝑧𝜉𝜉

𝑚𝑚2����

0

.

 

(168) 
 
 In order to find the unknown coefficients for the second equation, we will use 
received boundary conditions, for that reason we will differentiate the second equation 
of the (168) and obtain: 
 
𝜕𝜕𝜃𝜃2�(𝑚𝑚2����,𝑜𝑜)

𝜕𝜕𝑚𝑚2����
= 𝐴𝐴√𝐴𝐴𝐴𝐴ℎ�𝑥𝑥2���√𝐴𝐴� + 𝐵𝐵√𝐴𝐴𝑐𝑐ℎ�𝑥𝑥2���√𝐴𝐴� − ∫ �̅�𝜃0(𝜉𝜉)𝑐𝑐ℎ�√𝐴𝐴(𝑥𝑥2��� − 𝜉𝜉)�𝑧𝑧𝜉𝜉𝑚𝑚2����

0 . (169) 
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 Now, by applying the second expression of (167), we will receive the explicit 
value of the coefficient 𝐵𝐵: 
 

𝜕𝜕𝜃𝜃2�(0, 𝐴𝐴)
𝜕𝜕𝑥𝑥2���

= 𝐴𝐴√𝐴𝐴𝐴𝐴ℎ�0√𝐴𝐴�+ 𝐵𝐵√𝐴𝐴𝑐𝑐ℎ�0√𝐴𝐴� − � �̅�𝜃0(𝜉𝜉)𝑐𝑐ℎ�√𝐴𝐴(0 − 𝜉𝜉)�𝑧𝑧𝜉𝜉
0

0

→ 

 
→ 𝐵𝐵√𝐴𝐴 = −𝐾𝐾𝑖𝑖

𝑜𝑜
.     (170) 

 
 At the same time from the second expression of the (166), we will determine the 
coefficient 𝐴𝐴 as: 
 

�
𝜃𝜃2�(1, 𝐴𝐴) = 𝐴𝐴𝑐𝑐ℎ�√𝐴𝐴� − 𝐾𝐾𝑖𝑖

𝑜𝑜√𝑜𝑜
𝐴𝐴ℎ�√𝐴𝐴� − 1

√𝑜𝑜
∫ �̅�𝜃0(𝜉𝜉)𝐴𝐴ℎ�√𝐴𝐴(1 − 𝜉𝜉)�𝑧𝑧𝜉𝜉1
0 = 0,

𝐴𝐴 = 𝐾𝐾𝑖𝑖 𝑜𝑜ℎ�√𝑜𝑜�
𝑜𝑜√𝑜𝑜 𝑐𝑐ℎ�√𝑜𝑜�

+ 1
√𝑜𝑜𝑐𝑐ℎ�√𝑜𝑜�

∫ �̅�𝜃0(𝜉𝜉)𝐴𝐴ℎ�√𝐴𝐴(1− 𝜉𝜉)�𝑧𝑧𝜉𝜉1
0 .

 (171) 

 
 By plugging the obtained coefficients to our general solution in the frequency 
domain, we will obtain the following expression: 
   

𝜃𝜃2�(𝑥𝑥2���, 𝐴𝐴) =
𝐾𝐾𝑚𝑚 �𝐴𝐴ℎ�√𝐴𝐴�𝑐𝑐ℎ�𝑥𝑥2���√𝐴𝐴� − 𝐴𝐴ℎ�𝑥𝑥2���√𝐴𝐴�𝑐𝑐ℎ�√𝐴𝐴��

𝐴𝐴√𝐴𝐴 𝑐𝑐ℎ�√𝐴𝐴�
+ 

 

+
𝑐𝑐ℎ�𝑥𝑥2���√𝐴𝐴�
√𝐴𝐴𝑐𝑐ℎ�√𝐴𝐴�

� �̅�𝜃0(𝜉𝜉)𝐴𝐴ℎ�√𝐴𝐴(1 − 𝜉𝜉)�𝑧𝑧𝜉𝜉
1

0

− 

 
− 1

√𝑜𝑜
∫ �̅�𝜃0(𝜉𝜉)𝐴𝐴ℎ�√𝐴𝐴(𝑥𝑥2��� − 𝜉𝜉)�𝑧𝑧𝜉𝜉𝑚𝑚2����
0 .     

          (172) 
 
 We will simplify the above equation by using the following trigonometrical 
identities 𝐴𝐴ℎ(𝑥𝑥)𝑐𝑐ℎ(𝑦𝑦) − 𝐴𝐴ℎ(𝑦𝑦)𝑐𝑐ℎ(𝑥𝑥) = 𝐴𝐴ℎ(𝑥𝑥 − 𝑦𝑦) and reducing the integral 
expressions to a similar form, we obtain: 
 

𝜃𝜃2�(𝑥𝑥2���, 𝐴𝐴) =
𝐾𝐾𝑚𝑚 𝐴𝐴ℎ�√𝐴𝐴(1− 𝑥𝑥2���)�

𝐴𝐴√𝐴𝐴 𝑐𝑐ℎ�√𝐴𝐴�
+ 

 

+
1

√𝐴𝐴𝑐𝑐ℎ�√𝐴𝐴�
� �̅�𝜃0(𝜉𝜉)𝐴𝐴ℎ�√𝐴𝐴(1 − 𝑥𝑥2���)�𝑐𝑐ℎ�√𝐴𝐴𝜉𝜉�𝑧𝑧𝜉𝜉

𝑚𝑚2����

0

+ 

 



57 
 

+
1

√𝐴𝐴𝑐𝑐ℎ�√𝐴𝐴�
� �̅�𝜃0(𝜉𝜉)𝐴𝐴ℎ�√𝐴𝐴(1− 𝜉𝜉)�сℎ�𝑥𝑥2���√𝐴𝐴�𝑧𝑧𝜉𝜉
1

0

. 

          (173) 
 

 The key part of the further work in derivation procedure for considered case is 
to obtain the inverse transform of the received expressions in order to derive real time 
domain solution. The inverse Laplace transform is applied term by term to (173) in 
accordance with the second decomposition theorem. The numerator and denominator 
of the first term in (173) are expanded as follows, knowing the expansion formulas for 
hyperbolic functions: 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐴𝐴ℎ(𝑥𝑥) = 𝑥𝑥 + 𝑚𝑚3

3!
+ 𝑚𝑚5

5!
+ ⋯ ,

𝐴𝐴ℎ�√𝐴𝐴(1 − 𝑥𝑥2���)� = √𝐴𝐴(1 − 𝑥𝑥2���) + √𝑜𝑜
3(1−𝑚𝑚2����)3

3!
+ ⋯ =

= √𝐴𝐴 �(1 − 𝑥𝑥2���) + 𝑜𝑜3(1−𝑚𝑚2����)3

3!
+ ⋯� ,

𝑐𝑐ℎ(𝑥𝑥) = 1 + 𝑚𝑚2

2!
+ 𝑚𝑚4

4!
+ ⋯ ,

𝐴𝐴√𝐴𝐴 𝑐𝑐ℎ�√𝐴𝐴� = 𝐴𝐴√𝐴𝐴 �1 + 𝑜𝑜
2!

+ 𝑜𝑜2

4!
+ ⋯� .

   (174) 

 
Taking into account above notations, our first term will be transformed into: 
 

𝐾𝐾𝑖𝑖 𝑜𝑜ℎ�√𝑜𝑜(1−𝑚𝑚2����)�
𝑜𝑜√𝑜𝑜 𝑐𝑐ℎ�√𝑜𝑜�

= 𝐾𝐾𝑚𝑚
�(1−𝑚𝑚2����)+𝑖𝑖(1−𝑥𝑥2����)3

3! +⋯�

𝑜𝑜�1+𝑖𝑖
2!+⋯�

.   (175) 

 
Taking into account the fact that the numerator and denominator of expression 

(175) are the polynomials with respect to the frequency variable, applying the inverse 
transformation, we can use the second expansion theorem. The second decomposition 
theorem allows us to determine the original from the image and says that if 𝐹𝐹(𝐴𝐴) = 𝐴𝐴(𝑜𝑜)

𝐵𝐵(𝑜𝑜)
 

is a rational proper and irreducible fraction, where s1, s2, s3, … , sk are zeros of the 
denominator, then the original of this image function has the form: 

 
𝑓𝑓(𝑡𝑡) = ∑ 𝑐𝑐𝑒𝑒𝐴𝐴[𝐹𝐹(𝐴𝐴𝑘𝑘)𝑒𝑒𝑜𝑜𝑘𝑘𝜕𝜕]𝑜𝑜𝑘𝑘 = ∑ 𝐴𝐴(𝑜𝑜𝑘𝑘)

𝐵𝐵′(𝑜𝑜𝑘𝑘)
𝑒𝑒𝑜𝑜𝑘𝑘𝜕𝜕𝑜𝑜𝑘𝑘 . (176) 

 
It should be noted that equality (176) is satisfied only if all poles of 𝐹𝐹(𝐴𝐴) are of 

the first order, that is, they are simple. Note that a point a is a pole if 𝑙𝑙𝑚𝑚𝑚𝑚
𝜕𝜕→𝑎𝑎

|𝑓𝑓(𝑧𝑧)| = +∞, 
and also, if in the decomposition 𝑓𝑓(𝑧𝑧) in a Laurent series in the ring 0 < |𝑧𝑧 − 𝑎𝑎| < 𝑅𝑅 
the principal part has a finite number of terms. If the first term of the main part of the 
series contains (𝑧𝑧 − 𝑎𝑎)−𝑛𝑛, then we can consider the pole to be simple. In order to 
determine the zeros of the denominator (175), we will consider zero roots separately 
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from other roots. For that reason, according to the second decomposition theorem, we 
will write the original of the first term of the solution (173) in the form: 
 

𝐿𝐿−1 �𝐾𝐾𝑚𝑚 Ф(𝑜𝑜)
𝜑𝜑(𝑜𝑜)

� = Ф(0)
𝜑𝜑′(0)

+ ∑ Ф(𝑜𝑜𝑖𝑖)
𝜑𝜑′(𝑜𝑜𝑖𝑖)

∞
𝑛𝑛=1 𝑒𝑒𝑜𝑜𝑖𝑖𝜕𝜕𝑜𝑜.   (177) 

 
 By considering the first term of (177), we will observe the following fact: 

 

�
Ф(0) = �(1− �̅�𝑥) + 𝑜𝑜(1−�̅�𝑚)3

3!
+ ⋯�

𝑜𝑜=0
= (1 − �̅�𝑥),

𝜑𝜑′(0) = �𝐴𝐴 �1 + 𝑜𝑜
2!

+ ⋯ �
′

+ 𝐴𝐴′ �1 + 𝑜𝑜
2!

+ ⋯��
𝑜𝑜=0

= 1.
   (178) 

 
 It will give us the null root 𝐾𝐾𝑚𝑚(1 − �̅�𝑥). By considering other roots when 𝑚𝑚 ≥ 1, 
we will use: 
 

�𝐴𝐴ℎ
(𝑚𝑚𝑥𝑥) = 𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚(𝑥𝑥), 𝐴𝐴ℎ[𝑥𝑥] = 1

𝑖𝑖
𝐴𝐴𝑚𝑚𝑚𝑚(𝑚𝑚𝑥𝑥),

𝑐𝑐ℎ(𝑚𝑚𝑥𝑥) = cos(𝑥𝑥) , 𝑐𝑐ℎ(𝑥𝑥) = 𝑐𝑐𝐴𝐴𝐴𝐴(𝑚𝑚𝑥𝑥).
    (179) 

 
 Using above identities, we will receive: 
 

⎩
⎪
⎨

⎪
⎧ Ф(𝐴𝐴𝑛𝑛) = 1

𝑖𝑖
sin�𝑚𝑚√𝐴𝐴[1 − �̅�𝑥]� ,

𝜑𝜑′(𝐴𝐴𝑛𝑛) = �𝐴𝐴√𝐴𝐴𝑐𝑐ℎ√𝐴𝐴�
′

= √𝑜𝑜
2
�3𝑐𝑐ℎ√𝐴𝐴 + √𝐴𝐴𝐴𝐴ℎ√𝐴𝐴� =

= √𝑜𝑜
2
�3 cos�𝑚𝑚�𝐴𝐴𝑛𝑛� + �𝑜𝑜𝑖𝑖

𝑖𝑖
sin�𝑚𝑚�𝐴𝐴𝑛𝑛�� .

   (180) 

 
 We will consider the series (177) by applying the (180) identities and obtain 
another convenient form: 
 

∑ 2 sin�𝑖𝑖�𝑜𝑜𝑖𝑖[1−�̅�𝑚]�𝑒𝑒𝑖𝑖𝑖𝑖𝐹𝐹𝑜𝑜

𝑖𝑖√𝑜𝑜�3 cos�𝑖𝑖�𝑜𝑜𝑖𝑖�+
�𝑖𝑖𝑖𝑖
𝑖𝑖 sin�𝑖𝑖�𝑜𝑜𝑖𝑖��

∞
𝑛𝑛=1 .    (181) 

 
 The obtained expression above we will multiply and divide over 𝑚𝑚2, then we will 
denote by 𝜇𝜇𝑛𝑛 = 𝑚𝑚�𝐴𝐴𝑛𝑛, the above expression will take the form: 
 

⎩
⎪
⎨

⎪
⎧∑ 2sin�𝑖𝑖�𝑜𝑜𝑖𝑖[1−�̅�𝑚]�𝑒𝑒𝑖𝑖𝑖𝑖𝐹𝐹𝑜𝑜

𝑖𝑖√𝑜𝑜�3 cos�𝑖𝑖�𝑜𝑜𝑖𝑖�+
�𝑖𝑖𝑖𝑖
𝑖𝑖 sin�𝑖𝑖�𝑜𝑜𝑖𝑖��

∞
𝑛𝑛=1 = −∑ 2sin(𝜇𝜇𝑖𝑖[1−�̅�𝑚])𝑒𝑒−𝜇𝜇𝑖𝑖

2𝐹𝐹𝑜𝑜

𝜇𝜇𝑖𝑖(𝜇𝜇𝑖𝑖 sin(𝜇𝜇𝑖𝑖)−3cos(𝜇𝜇𝑖𝑖))
∞
𝑛𝑛=1 ,

𝐾𝐾𝑖𝑖 𝑜𝑜ℎ�√𝑜𝑜(1−𝑚𝑚2����)�
𝑜𝑜√𝑜𝑜 𝑐𝑐ℎ�√𝑜𝑜�

= 𝐾𝐾𝑚𝑚 �(1 − 𝑥𝑥2���) − ∑ 2sin(𝜇𝜇𝑖𝑖[1−�̅�𝑚])𝑒𝑒−𝜇𝜇𝑖𝑖
2𝐹𝐹𝑜𝑜

𝜇𝜇𝑖𝑖(𝜇𝜇𝑖𝑖 sin(𝜇𝜇𝑖𝑖)−3cos(𝜇𝜇𝑖𝑖))
∞
𝑛𝑛=1 � .

 (182) 
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 By analogy we apply the second decomposition theorem of operational calculus 
towards second and third terms of our general solution (173): 
 

�
Ф(𝐴𝐴) = �√𝐴𝐴(1− �̅�𝑥) + √𝑜𝑜

3(1−�̅�𝑚)3

3!
+ ⋯� �1 + 𝑜𝑜𝜉𝜉2

2!
+ ⋯� ,

𝜑𝜑′(𝑜𝑜) = �√𝐴𝐴𝑐𝑐ℎ√𝐴𝐴�
′

= 1
2√𝑜𝑜

�𝑐𝑐ℎ√𝐴𝐴 + √𝐴𝐴𝐴𝐴ℎ√𝐴𝐴�.
  (183) 

 
 Which results in the following quotient: 
 

Ф(𝑜𝑜)
𝜑𝜑′(𝑜𝑜)

= 2√𝑜𝑜𝑜𝑜ℎ�√𝑜𝑜(1−�̅�𝑚)𝑐𝑐ℎ�√𝑜𝑜𝜉𝜉��
𝑐𝑐ℎ√𝑜𝑜+√𝑜𝑜𝑜𝑜ℎ√𝑜𝑜

.    (184) 
 
 Taking into account that we have the frequency variable 𝐴𝐴, our null root will be 
equal to zero, i.e., Ф(0)

𝜑𝜑′(0)
= 0. By taking into account the trigonometrical identities (179), 

we will find the inverse transform as the following series: 
 

𝐿𝐿−1 �Ф(𝑜𝑜)
𝜑𝜑′(𝑖𝑖)� = ∑ 2�𝑜𝑜𝑖𝑖(1/𝑖𝑖)𝑜𝑜𝑖𝑖𝑛𝑛�𝑖𝑖�𝑜𝑜𝑖𝑖(1−�̅�𝑚)�𝑐𝑐𝑜𝑜𝑜𝑜�𝑖𝑖�𝑜𝑜𝑖𝑖𝜉𝜉�

cos�𝑖𝑖�𝑜𝑜𝑖𝑖�+�𝑜𝑜𝑖𝑖(1/𝑖𝑖) sin�𝑖𝑖�𝑜𝑜𝑖𝑖�
∞
𝑛𝑛=1 𝑒𝑒𝑜𝑜𝑖𝑖𝜕𝜕𝑜𝑜.   (185) 

 
 Similarly, like in the previous term, we will take the resulting expression to 
multiply and divide it by 𝑚𝑚2, after that we will denote by 𝜇𝜇𝑛𝑛 = 𝑚𝑚�𝐴𝐴𝑛𝑛, then the above 
series will take the form: 
 

𝐿𝐿−1 �Ф(𝑜𝑜)
𝜑𝜑′(𝑖𝑖)� = ∑ 2𝜇𝜇𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛[𝜇𝜇𝑖𝑖(1−�̅�𝑚)]𝑐𝑐𝑜𝑜𝑜𝑜(𝜇𝜇𝑖𝑖𝜉𝜉)

𝜇𝜇𝑖𝑖 sin(𝜇𝜇𝑖𝑖)−cos(𝜇𝜇𝑖𝑖)
∞
𝑛𝑛=1 𝑒𝑒−𝜇𝜇𝑖𝑖2𝜕𝜕𝑜𝑜.   (186) 

 
 Thus, the original of the second term of the general solution takes the form: 
 

𝐿𝐿−1 �Ф(𝑜𝑜)
𝜑𝜑′(𝑖𝑖)� = ∑ 2𝜇𝜇𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛[𝜇𝜇𝑖𝑖(1−�̅�𝑚)]

𝜇𝜇𝑖𝑖 sin(𝜇𝜇𝑖𝑖)−cos(𝜇𝜇𝑖𝑖)
∞
𝑛𝑛=1 𝑒𝑒−𝜇𝜇𝑖𝑖2𝜕𝜕𝑜𝑜 ∫ �̅�𝜃0(𝜉𝜉)𝑐𝑐𝐴𝐴𝐴𝐴(𝜇𝜇𝑛𝑛𝜉𝜉)𝑧𝑧𝜉𝜉�̅�𝑚

0 . (187) 
 

By analogy we will write the third term of the general solution (173) and 
determine the zeros of the denominator by determining the values 𝜇𝜇𝑛𝑛: 
 

Ф(𝑜𝑜)
𝜑𝜑(𝑜𝑜)

= 𝑜𝑜ℎ�√𝑜𝑜(1−𝜉𝜉)�сℎ�𝑚𝑚2����√𝑜𝑜�
√𝑜𝑜𝑐𝑐ℎ�√𝑜𝑜�

= �𝑜𝑜ℎ√𝑜𝑜𝑐𝑐ℎ�√𝑜𝑜𝜉𝜉�−𝑜𝑜ℎ�√𝑜𝑜𝜉𝜉�𝑐𝑐ℎ√𝑜𝑜�сℎ�𝑚𝑚2����√𝑜𝑜�
√𝑜𝑜𝑐𝑐ℎ�√𝑜𝑜�

. (188) 

 
 Considering the denominator, we will extract the characteristic equation 𝑐𝑐ℎ√𝐴𝐴 =
0, which is equivalent to cos�𝑚𝑚√𝐴𝐴� = 0, then, we will get 𝑚𝑚�𝐴𝐴𝑛𝑛 = 𝜋𝜋𝑛𝑛

2
, that is 𝐴𝐴𝑛𝑛 =

−𝜋𝜋2𝑛𝑛2

4
 or which is the same as 𝜇𝜇𝑛𝑛 = 𝜋𝜋𝑛𝑛

2
, which is the set of roots of the characteristic 

equations of the considered system. By applying these characteristic equation roots 
towards (188), we will derive: 
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�

Ф(𝑜𝑜)
𝜑𝜑(𝑜𝑜)

= 𝑜𝑜ℎ√𝑜𝑜𝑐𝑐ℎ�√𝑜𝑜𝜉𝜉�сℎ�𝑚𝑚2����√𝑜𝑜�
√𝑜𝑜𝑐𝑐ℎ�√𝑜𝑜�

Ф(𝑜𝑜)
𝜑𝜑′(𝑜𝑜)

= 2√𝑜𝑜𝑜𝑜ℎ√𝑜𝑜𝑐𝑐ℎ�√𝑜𝑜𝜉𝜉�сℎ�𝑚𝑚2����√𝑜𝑜�
√𝑜𝑜𝑜𝑜ℎ�√𝑜𝑜�−𝑐𝑐ℎ�√𝑜𝑜�

    (189) 

 
 Applying now the trigonometrical identities (179) towards above equation and 
denoting by 𝑚𝑚�𝐴𝐴𝑛𝑛 = 𝜇𝜇𝑛𝑛, we will receive the original of the third term: 
 

�
𝐿𝐿−1 �Ф(𝑜𝑜)

𝜑𝜑′(𝑖𝑖)� = ∑ 2𝜇𝜇𝑖𝑖 sin(𝜇𝜇𝑖𝑖)𝑐𝑐𝑜𝑜𝑜𝑜(𝜇𝜇𝑖𝑖𝜉𝜉)с𝑜𝑜𝑜𝑜[𝑚𝑚2����𝜇𝜇𝑖𝑖]
𝜇𝜇𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛[𝜇𝜇𝑖𝑖]−𝑐𝑐𝑜𝑜𝑜𝑜[𝜇𝜇𝑖𝑖]

∞
𝑛𝑛=1 𝑒𝑒−𝜇𝜇𝑖𝑖2𝜕𝜕𝑜𝑜,

𝐿𝐿−1 �Ф(𝑜𝑜)
𝜑𝜑′(𝑖𝑖)� = ∑ 2𝜇𝜇𝑖𝑖 sin(𝜇𝜇𝑖𝑖)с𝑜𝑜𝑜𝑜[𝑚𝑚2����𝜇𝜇𝑖𝑖]

𝜇𝜇𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛[𝜇𝜇𝑖𝑖]−𝑐𝑐𝑜𝑜𝑜𝑜[𝜇𝜇𝑖𝑖]
∞
𝑛𝑛=1 𝑒𝑒−𝜇𝜇𝑖𝑖2𝜕𝜕𝑜𝑜 ∫ �̅�𝜃0(𝜉𝜉)𝑐𝑐𝐴𝐴𝐴𝐴(𝜇𝜇𝑛𝑛𝜉𝜉)𝑧𝑧𝜉𝜉1

0 .
  (190) 

 
 Now by collecting together the identities (185), (187) and (190), we will receive 
the original of particular solution for the second decomposed model in dimensionless 
units: 
 

𝜃𝜃2(𝑥𝑥2���,𝐹𝐹𝐴𝐴) = 𝐾𝐾𝑚𝑚 �(1− 𝑥𝑥2���) −�
2 sin(𝜇𝜇𝑛𝑛[1 − �̅�𝑥]) 𝑒𝑒−𝜇𝜇𝑖𝑖2𝜕𝜕𝑜𝑜

𝜇𝜇𝑛𝑛(𝜇𝜇𝑛𝑛 sin(𝜇𝜇𝑛𝑛) − 3 cos(𝜇𝜇𝑛𝑛))

∞

𝑛𝑛=1

�+ 

 

+�
2𝜇𝜇𝑛𝑛𝐴𝐴𝑚𝑚𝑚𝑚[𝜇𝜇𝑛𝑛(1 − �̅�𝑥)]
𝜇𝜇𝑛𝑛 sin(𝜇𝜇𝑛𝑛) − cos(𝜇𝜇𝑛𝑛)

∞

𝑛𝑛=1

𝑒𝑒−𝜇𝜇𝑖𝑖2𝜕𝜕𝑜𝑜 � �̅�𝜃0(𝜉𝜉)𝑐𝑐𝐴𝐴𝐴𝐴(𝜇𝜇𝑛𝑛𝜉𝜉)𝑧𝑧𝜉𝜉
�̅�𝑚

0

+ 

 

+�
2𝜇𝜇𝑛𝑛 sin(𝜇𝜇𝑛𝑛) с𝐴𝐴𝐴𝐴[𝑥𝑥2���𝜇𝜇𝑛𝑛]
𝜇𝜇𝑛𝑛𝐴𝐴𝑚𝑚𝑚𝑚[𝜇𝜇𝑛𝑛] − 𝑐𝑐𝐴𝐴𝐴𝐴[𝜇𝜇𝑛𝑛]

∞

𝑛𝑛=1

𝑒𝑒−𝜇𝜇𝑖𝑖2𝜕𝜕𝑜𝑜 � �̅�𝜃0(𝜉𝜉)𝑐𝑐𝐴𝐴𝐴𝐴(𝜇𝜇𝑛𝑛𝜉𝜉)𝑧𝑧𝜉𝜉
1

0

 

            (191) 
 
 Further by using the trigonometrical identities of the form: 𝐴𝐴𝑚𝑚𝑚𝑚[𝜇𝜇𝑛𝑛(1 − �̅�𝑥)] =
𝐴𝐴𝑚𝑚𝑚𝑚𝜇𝜇𝑛𝑛 𝑐𝑐𝐴𝐴𝐴𝐴(𝜇𝜇𝑛𝑛�̅�𝑥)− 𝐴𝐴𝑚𝑚𝑚𝑚(𝜇𝜇𝑛𝑛�̅�𝑥) 𝑐𝑐𝐴𝐴𝐴𝐴 𝜇𝜇𝑛𝑛, and taking into account the characteristic 
equation of the system, 𝑐𝑐𝐴𝐴𝐴𝐴 𝜇𝜇𝑛𝑛 = 0, we will get s𝑚𝑚𝑚𝑚𝜇𝜇𝑛𝑛 = (−1)𝑛𝑛+1 , that means that 
𝐴𝐴𝑚𝑚𝑚𝑚�𝜇𝜇𝑛𝑛(1 − �̅�𝑥)� = (−1)𝑛𝑛+1 𝑐𝑐𝐴𝐴𝐴𝐴(𝜇𝜇𝑛𝑛�̅�𝑥). The final analytical solution will take the 
following form: 
 

𝜃𝜃2(𝑥𝑥2���,𝐹𝐹𝐴𝐴) = 𝐾𝐾𝑚𝑚 �(1 − 𝑥𝑥2���) −�
8 cos �𝜋𝜋𝑚𝑚�̅�𝑥2 � 𝑒𝑒−

𝜋𝜋2𝑛𝑛2
2 𝜕𝜕𝑜𝑜

𝜋𝜋2𝑚𝑚2

∞

𝑛𝑛=1

� + 

 

+∑ 2с𝐴𝐴𝐴𝐴 �𝜋𝜋𝑛𝑛�̅�𝑚
2
�∞

𝑛𝑛=1 𝑒𝑒−
𝜋𝜋2𝑖𝑖2

2 𝜕𝜕𝑜𝑜 ∫ �̅�𝜃0(𝜉𝜉)𝑐𝑐𝐴𝐴𝐴𝐴 �𝜋𝜋𝑛𝑛
2
𝜉𝜉� 𝑧𝑧𝜉𝜉1

0  (192) 
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 Since in the first problem solution we have only unknown heat flux over the inlet 
boundary, we use the computational model of the bulb lamp in order to simulate the 
process of heating flux from the environment and deduce the values of the heat flux, 
and to measure such values of the heat flux at x = 0, we model numerically by the finite 
element method the conductive, convective and radiative heat exchanges in an 
incandescent lamp filled with argon with a technical voltage of 220V in order to 
determine the point values of the heat flux. For the referent date we refer to SN RK 
4.04-04-2013, which state that in outdoor electric lighting networks the voltage 
380/220 V AC with grounded neutral is used. For the power supply of lighting devices, 
a voltage of not more than 220 V AC or DC should be utilized, we present below the 
average field distribution for the heat flux to derive the data over the boundary points 
of the considered lamp, first the corresponding figure for structured mesh and 
streamlines: 
 

 
  

 
Figure 5 - Conductive streamline heat flux (left), structured mesh over axisymmetric 

region 
  
 The above computational mesh, based on the finite element method with the help 
of sampling of the test and basis functions, was performed for the considered multi-
physical additional problem, which results further utilized for the model input 
boundary parameters as the heat flux. The method performed via construction of the 
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scalar product of the general equation and the arbitrary functions with further 
integration over the domain, which results in further construction of the infinite-
dimensional function space, that is the Hilbert space with specific properties induced 
by Euclidian norm. This problem formulation is referred to as the pointwise-
formulation, so-called the Galerking method, may be treated further by the Green’s 
first identity results in weak formulation that relaxes the posed conditions over arbitrary 
basis functions. With the proposed weak formulation, it is possible to discretize the 
posed mathematical model equations an obtain the numerical model equations which 
correspond approximately to continuous model. Following these assumptions, the 
conductive heat flux 𝑄𝑄(𝑥𝑥) is presented as a linear combination of a set of basis 
functions 𝜓𝜓𝑖𝑖 that belong to the subspace of the constructed Hilbert space, i.e., 𝑄𝑄(𝑥𝑥) ≈
∑ 𝑄𝑄𝑖𝑖𝜓𝜓𝑖𝑖𝑖𝑖 , where 𝑚𝑚 = 1,2, …𝑁𝑁. That approximation results in construction of the system 
of 𝑁𝑁 linear equations. Once the proposed system is discretized the system of linear 
equations presented by the matrix form, which is also referred as the stiffness matrix. 
Two neighboring basis functions afterwards share two triangular elements in common. 
These functions do not share the elements itself, but they have one element vertex in 
common. The obtained solution of the system of algebraic equations via iterative 
numerical algorithm gives an approximation of the solution to the system of partial 
differential equations that describe the physical process. The denser the constructed 
mesh, the closer the approximate solution gives results to the actual solution of 
continuous model. For instance, the one-dimensional dynamical system modelled by 
domain ℧: [𝑥𝑥1, 𝑥𝑥2]  ∪ [𝑡𝑡1, 𝑡𝑡2] is meshed by integra-interpolation approximations and 
formulas: 
 

⎩
⎪
⎨

⎪
⎧ ∆𝑥𝑥 = 𝑚𝑚2−𝑚𝑚1

𝑁𝑁
, ∆𝑡𝑡 = 𝜕𝜕2−𝜕𝜕1

𝑀𝑀
,

𝑥𝑥𝑖𝑖 = 𝑥𝑥1 + 𝑚𝑚∆𝑥𝑥, 𝑡𝑡𝑗𝑗 = 𝑡𝑡1 + 𝑗𝑗∆𝑡𝑡,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
≈ 𝜕𝜕𝑖𝑖

𝑗𝑗+1−𝜕𝜕𝑖𝑖
𝑗𝑗

∆𝜕𝜕
, 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑚𝑚2

≈ 𝜕𝜕𝑖𝑖+1
𝑗𝑗 −2𝜕𝜕𝑖𝑖

𝑗𝑗+𝜕𝜕𝑖𝑖−1
𝑗𝑗

(∆𝑚𝑚)2
.

    (193) 

 
 Although the above assumptions could be sampled in accordance with the chose 
numerical accuracy resulting in selection of one of the suitable numerical scheme, this 
still illustrates the general idea of the constructed mesh and the finite element method 
utilized for discretization. For instance, the following approximations of the time 
marching scheme of the thermal components of the flux with the heat source 𝑡𝑡, using 
the Galerkin method could be written as the following explicit and implicit forms 
correspondingly: 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∑ ∫ 𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉 + ∑ 𝑄𝑄𝑖𝑖 ∫ 𝑘𝑘∇𝜓𝜓𝑖𝑖 ∙ ∇𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉℧𝑖𝑖℧𝑖𝑖 +

+∑ 𝑄𝑄𝑖𝑖 ∫ (−𝑘𝑘𝑄𝑄𝑖𝑖∇𝜓𝜓𝑖𝑖 ∙ n)𝜓𝜓𝑗𝑗𝑧𝑧𝑆𝑆𝜕𝜕℧𝑖𝑖 = ∫ 𝑡𝑡(∑ 𝑄𝑄𝑖𝑖𝜓𝜓𝑖𝑖𝑖𝑖 )℧ 𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉,

𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝑖𝑖
𝑗𝑗+1−𝜕𝜕𝑖𝑖

𝑗𝑗

∆𝜕𝜕
∑ ∫ 𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉 + ∑ 𝑄𝑄𝑖𝑖

𝑗𝑗+1 ∫ 𝑘𝑘∇𝜓𝜓𝑖𝑖 ∙ ∇𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉℧𝑖𝑖℧𝑖𝑖 +

+∑ 𝑄𝑄𝑖𝑖
𝑗𝑗+1 ∫ �−𝑘𝑘𝑄𝑄𝑖𝑖

𝑗𝑗+1∇𝜓𝜓𝑖𝑖 ∙ n�𝜓𝜓𝑗𝑗𝑧𝑧𝑆𝑆𝜕𝜕℧𝑖𝑖 = ∫ 𝑡𝑡�∑ 𝑄𝑄𝑖𝑖
𝑗𝑗+1𝜓𝜓𝑖𝑖𝑖𝑖 �℧ 𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉,

𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝑖𝑖
𝑗𝑗+1−𝜕𝜕𝑖𝑖

𝑗𝑗

∆𝜕𝜕
∑ ∫ 𝜓𝜓𝑖𝑖𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉 + ∑ 𝑄𝑄𝑖𝑖

𝑗𝑗 ∫ 𝑘𝑘∇𝜓𝜓𝑖𝑖 ∙ ∇𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉℧𝑖𝑖℧𝑖𝑖 +

+∑ 𝑄𝑄𝑖𝑖
𝑗𝑗 ∫ �−𝑘𝑘𝑄𝑄𝑖𝑖

𝑗𝑗∇𝜓𝜓𝑖𝑖 ∙ n�𝜓𝜓𝑗𝑗𝑧𝑧𝑆𝑆𝜕𝜕℧𝑖𝑖 = ∫ 𝑡𝑡�∑ 𝑄𝑄𝑖𝑖
𝑗𝑗𝜓𝜓𝑖𝑖𝑖𝑖 �℧ 𝜓𝜓𝑗𝑗𝑧𝑧𝑉𝑉.

 (194) 

 
In practice, most of the modern time-stepping algorithms usually automatically 

switched between explicit and implicit steps depending on the problem posed. The 
difference equation (194) is further replaced with a polynomial expression that may 
vary in sampled order or the step length depending on the evolution of the solution in 
time. Most modern time-marching schemes are automatically controlled by the time 
evolution of the numerical solution. It is non-representative to depict the basis of the 
quadratic basis functions in 3-D by using the second-order elements, like tetrahedral, 
pyramidal, hexahedral etc., but color fields mapped on the domain may be used to plot 
the function values on the element surfaces giving us the illustration of the obtained 
solution. Regarding the distribution of the principal fields inside of the bulb, the 
average values during the first 5 minutes are represented by the figure below: 

 
   

  
 

Figure 6 - Temperature field (left), velocity magnitude (right) 
 
 As for the heat flux along the lamp surface, we may take an average value from 
the below output: 
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Figure 7 - Conductive heat flux during 5 minutes in cross-section over the boundary 
arc-length 

 

Afterwards we present the computational results for the difference values 
between the measured and computational values of the sampled devices along time-
domain: 

 

 
 

Figure 8 - Difference values at selected measuring device and evaluated 
temperatures through iterations 
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Concerning the estimated parameters 𝜋𝜋1, we may observe the gradual approach 
towards the stationary values by performance of the algorithm – 1, when we 
determining the minimized values of the objective functions (121) and (122): 

 

 
 

Figure 9 - The density estimation of the first sub-domain 
 

By the gradual decrease of the estimated parameters, we observe by the above 
figures that our initial approximations were overestimated, since the same behavior we 
have for the volumetric heat capacity: 

 

 
 

Figure 10 - Volumetric heat capacity estimation 
 
 The same tendency we receive by computing the heat transfer and thermal 
conductivity coefficients estimators via the proposed algorithm: 
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Figure 11 - Heat transfer determination over the first sub-domain 
 
Since the conductivity parameter perceive the same overestimated initial guess, 

we also obtain the same gradual decrease towards stationary value: 
 

 
 

Figure 12 - Heat conductivity parameter estimation 
 

For the second sub-domain problem we intentionally select the underestimated 
approximations for initial iteration in order to verify if the algorithm will demonstrate 
same smoothness in approaching the stationary values: 
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Figure 13 - Second layer parameters estimation 
 

However, for the geometrical characteristic, we perform estimations for both 
under and overestimated initial sampling, in order to compare their convergency rates: 

 

 
 

Figure 14 - Geometrical characteristic estimation 
 

As could be clearly observable from above figures, we have a stable approach 
towards the stationary values by appropriate selection of the initial samplings. 
However, if we would determine the parameters sequentially as presented in our 
algorithm – 1, the tunning of parameters is not necessary as discussed in regularization 
issues in [80]. This fact is critical, as could be observed in various experimental works 
[81 – 83], where the regularization of the inverse problem affects the results and 
optimal convergency order. At the same time, the convergency issues could be 
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considered to be improved by appropriate sample of the iterative approach if certain 
stability condition constrains would be utilized for the posed model [84 – 88]. Since 
the measurement devices are also subjects that introduce the measurement error, we 
perform the test for noise simulation over the suggested algorithm. While the stable 
approach for exact value determination from both under and overestimated cases could 
be achieved by the meaningful samplings of some physical constraints represented by 
the governing coefficient in the recurrent computational formulas. Thus, in such case 
the sequential selection of the mentioned constrains, parameters tunning will be not 
necessary [89]. However, it was discussed by different investigations [90-92], that the 
parameter value utilized for the regularized inverse problems critically affects the 
obtained results and optimal selected order of convergency. The noise simulation is 
considered as the divergency free vector field via the noise error introduction: 
 

𝑇𝑇𝜉𝜉� = 𝑇𝑇𝜉𝜉�1 + 𝜉𝜉𝑛𝑛�.      (195) 
 
 Here the introduced 𝜉𝜉𝑛𝑛 is prescribed error of the measuring device considered at 
selected point, that we assume as the smooth-step sigmoid-like interpolation and 
clamping function as depicted on below figure where we depict the normalized 
frequency for selected samples: 
 

 
 

Figure 15 - Noise analysis for selected sampled measurements 
 
 The smoothness in the above profile reflects that the prescribed error is analogue 
of the simplex noise scaling procedure, and that the algorithm has high tendency to 
stability perseverance towards introduced measurements fluctuations.  
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3.2 Experimental design for inverse problem of the thermoelastic stress 
analysis model  

For the second multiphysical model results validation, we perform the following 
numerical experiment. We consider a thin plate with fixed boundary edges constrain 
with homogeneous isotropic domain subjected to gravity load and thermal expansion 
due to introduced heat inward and outward fluxes in parallel directions. We consider a 
case with structural steel in order to perceive small fluctuations and the referent 
parameters are derived from typical normative documentation. The key formulation of 
the posed design is to evaluate the field distributions with normative referent 
parameters and afterwards perform the algorithm – 2 to adjust the key physical 
parameters according to set measurement data over the boundary edges. Following this 
approach iteratively we will seek computations with evaluated coefficients and 
continue simultaneously observing the functional behavior. The referent parameters 
are presented in the table below. 
 
Table 1 - Reference physical parameters derived from typical normative 
 

Name Value Unit 
Heat capacity at constant 

pressure 475[J/(kg*K)] J/(kg·K) 

Thermal conductivity 44.5[W/(m*K)] W/(m·K) 
Coefficient of thermal 

expansion 12.3e-6[1/K] 1/K 

Density 7850[kg/m^3] kg/m³ 
Young's modulus 200e9[Pa] Pa 

Poisson's ratio 0.30 1 
Lamé parameter λ 1.15e11[Pa] Pa 

   
 Afterwards we introduce the physically controlled mesh over the domain which 
satisfies statistics presented in the below table – 2. The initial choice of the reference 
parameters is a key point in algorithm – 2, since the general convergency of the iterative 
mentioned algorithm will depend on the closeness level of the initial approximations 
towards the exact real values. 
 
Table 2 - Mesh statistics 
 

Description Value 
Minimum element quality 0.2609 
Average element quality 0.6278 

Tetrahedron 16157 
Triangle 10700 

Edge element 380 
Vertex element 8 

Continuation of the table 2  
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Maximum element size 0.055 
Minimum element size 0.004 

Curvature factor 0.4 
Resolution of narrow regions 0.7 

Maximum element growth rate 1.4 

  
 Since we are aimed to compare the functional values at each iteration, we 

evaluate the comparison of the key physical quantities, that are the gradient magnitude 
of the temperature field, the principal stress major component, and the domain 
displacement field. We will observe the gradual decrease of the potential energy 
surface profile which is presented by the posed functionals. Introducing the sampled 
physically controlled mesh towards our continuous domain with the above statistics 
presented in table 2, we perform the direct numerical simulation by simple numerical 
approach such as the discretized finite difference method for the posed model keeping 
the stability condition in accordance with the physically controlled mesh, in accordance 
with the described approximation finite element method via the system (193) – (194). 
Firstly, the discretization procedure may be illustrated via the formulas presented in 
system (196) through the covering of considered domain by the mesh elements 𝑥𝑥𝑖𝑖 =
𝑚𝑚∆𝑥𝑥, where ∆𝑥𝑥 = 𝐿𝐿

𝑁𝑁
, 𝑚𝑚 = 0,𝑁𝑁�����. We will demonstrate the discretized analogue of the 

posed continuous model for the system (34) – (37) as follows: 
 

𝜌𝜌(𝑥𝑥𝑖𝑖)𝑐𝑐𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑌𝑌𝑖𝑖
𝑗𝑗+1−𝑌𝑌𝑖𝑖

𝑗𝑗

∆𝑚𝑚
= 𝜆𝜆 �𝑥𝑥𝑖𝑖+12

� 𝑌𝑌𝑖𝑖+1
𝑗𝑗 −𝑌𝑌𝑖𝑖

𝑗𝑗

(∆𝑚𝑚)2 
− 𝜆𝜆 �𝑥𝑥𝑖𝑖−12

� 𝑌𝑌𝑖𝑖
𝑗𝑗+𝑌𝑌𝑖𝑖−1

𝑗𝑗

(∆𝑚𝑚)2 
.  (196) 

 

𝜆𝜆(𝑥𝑥0) 𝑌𝑌1
𝑗𝑗−𝑌𝑌0

𝑗𝑗

∆𝑚𝑚 
= ℎ𝑜𝑜𝑜𝑜𝜕𝜕 �𝑌𝑌0

𝑗𝑗 − 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕(𝑥𝑥0)�.      (197) 
 

𝜆𝜆(𝑥𝑥𝑁𝑁) 𝑌𝑌𝑁𝑁
𝑗𝑗−𝑌𝑌𝑁𝑁−1

𝑗𝑗

∆𝑚𝑚 
= −ℎ𝑖𝑖𝑛𝑛𝑜𝑜 �𝑌𝑌𝑁𝑁

𝑗𝑗 − 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕(𝑥𝑥0)�.     (198) 
 

𝑌𝑌𝑖𝑖0 = 𝑇𝑇0(𝑥𝑥).          (199) 
 
The introduced discrete system (196) – (197) may be calculated for values of 

𝑌𝑌(𝑥𝑥𝑖𝑖), 𝑚𝑚 = 0,𝑁𝑁����� via any iterative method that gives the best convergency rate 
depending on the preferred computational time, available memory available to sustain 
the high accuracy level by increasing the meshing points with respect to the length of 
considered medium. 
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Figure 16 - Displacement field with 
reference parameters 

 

 
 

Figure 17 - Displacement field with 
analytically evaluated parameters 

 

 
 

Figure 18 - Temperature gradient 
magnitude with reference parameters 

 
 
 

 
 

Figure 19 - Temperature gradient 
magnitude with analytically evaluated 

parameters 
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Figure 20 - Stress distribution with 
reference parameters 

 

 
Figure 21 - Stress distribution with 
analytically evaluated parameters 

 

 
 The temperature gradient magnitude presents small fluctuations due to the linear 
thermal expansion as a response to the uniformly distributed loads introduced along 
with the principal stresses over the nodes of fixed constraints. We also may note the 
maximum displacement at the center where the dissipation of energy demonstrates its 
maximum value so that the stress inside solid is minimum over discussed region. 
Above figures (16) – (21) are demonstrating the typical profiles for the posed 
mathematical model (16) – (23). The scenario is altered after re-evaluated key physical 
parameters which are the domains of objective functions from the algorithms – 2. 
However, this alternation is only applicable towards the temperature gradient 
magnitude, since the introduce fluctuations are sufficiently small to introduce the high 
level of oscillations towards the energy dissipation of the structural steel plate. The 
figures below illustrate the evaluation of the key physical parameters of discussed 
thermoelastic stress analysis model. 
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Figure 22 - Thermal conductivity parameter evaluation through each iteration 
 
 On the figure 22 we may note that the determination of parameters with the 
analytical approach is performed faster in comparison to the numerical functional 
minimization and it illustrates the gradual decrease, since the initial guess had 
underestimated value. 

 
 

Figure 23 - Thermal expansion parameter evaluation over each iteration 
 
 The above figure 23 has the same patterns as the thermal conductivity evaluation 
profile, even though the referent value had such small order, we still perceive 
approximately the same number of iterations in the algorithm – 2. 
 

 
 

Figure 24 - The Young’s modulus parameter determination through each iteration 
 
 As could be observed on the above scatters, we choose the values for initial 
approximations to be overestimated and obtained the gradual increase of corrected 
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value in this case, that contrasts with the overestimated initial samples. However,  the 
algorithm provides a smooth convergency rate to the exact values in both cases.  
 

 
 

Figure 25 - Functional minimization over parameters on each iteration 
  
 The monotonous decrease of the functional value could be observed on the above 
scatter plot, that is figure 25. The decrement rate strictly depends on the proper choice 
of the governing coefficient and initial sample, as could be deduced by observing 
different parameters’ functionals. For example, the Young’s modulus parameter has a 
lower rate of convergency for the proposed algorithm – 2 in comparison to the thermal 
conductivity parameter evaluation manner. The appropriate error tolerance may be 
introduced for the functional minimization by: 
 

|𝐽𝐽𝑛𝑛+1(𝜋𝜋°) − 𝐽𝐽𝑛𝑛(𝜋𝜋°)| ≤ 𝑖𝑖     (200) 
 
 Where the parameter 𝑖𝑖 is a prescribed error tolerance that we may introduce in 
order to control the iterations number for determination parameter 𝜋𝜋°. 
 
 3.3   Experimental design for quasi-linearized problem with non-
homogenized boundary conditions  
 In the current subchapter we will illustrate the approach towards analytical 
solution derivation with the case when instead of homogenization of the posed model 
(34) – (38) we perform the linearization via the decomposition of the general problem 
into several sub-problems connected via the continuity conditions: 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜌𝜌(𝑥𝑥)𝑐𝑐𝑝𝑝(𝑥𝑥)

𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡 =

𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝑘𝑘(𝑥𝑥)
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥� , 𝒙𝒙 ∈ Ω 

−𝑘𝑘(𝑥𝑥)
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥𝑚𝑚=0

= ℎ𝑖𝑖𝑛𝑛𝑜𝑜(𝜃𝜃 − 𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜)𝑚𝑚=0,

𝑘𝑘(𝑥𝑥)
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥𝑚𝑚=𝐿𝐿

= ℎ𝑖𝑖𝑛𝑛𝑜𝑜(𝜃𝜃 − 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕)𝑚𝑚=𝐿𝐿 ,

𝜃𝜃𝜕𝜕=0 = 𝑇𝑇0.

→  

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡 = 𝑘𝑘1

𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥 , 𝒙𝒙 ∈ �𝟎𝟎, 𝝃𝝃𝟏𝟏�

−𝑘𝑘1
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥𝑚𝑚=0

= ℎ𝑖𝑖𝑛𝑛𝑜𝑜(𝜃𝜃 − 𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜)𝑚𝑚=0,

𝜃𝜃𝑚𝑚=𝜉𝜉1 = 𝑇𝑇𝜉𝜉 ,
𝜃𝜃𝜕𝜕=0 = 𝑇𝑇0.

→ 

 

→

⎩
⎪
⎨

⎪
⎧ 𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

= 𝑘𝑘2
𝜕𝜕𝜃𝜃
𝜕𝜕𝑚𝑚

, 𝒙𝒙 ∈ �𝝃𝝃𝟏𝟏, 𝑳𝑳�

𝑘𝑘2
𝜕𝜕𝜃𝜃
𝜕𝜕𝑚𝑚𝑚𝑚=𝐿𝐿

= ℎ𝑜𝑜𝑜𝑜𝜕𝜕(𝜃𝜃 − 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕)𝑚𝑚=𝐿𝐿 ,
𝜃𝜃𝑚𝑚=𝜉𝜉1 = 𝑇𝑇𝜉𝜉 ,
𝜃𝜃𝜕𝜕=0 = 𝑇𝑇0.

    (201) 

 
The sequence of systems (201) presents the decomposition scheme towards 

initially formulated direct problem. Afterwards we separately consider both obtained 
system and investigate their Laplace transforms. 

 

ℒ �𝜌𝜌1𝑐𝑐𝑝𝑝1
𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡 − 𝑘𝑘1

𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2� = ℒ �𝜌𝜌1𝑐𝑐𝑝𝑝1

𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡� − ℒ �𝑘𝑘1

𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2� = 

 

= �
ℒ[𝜃𝜃(𝑥𝑥, 𝑡𝑡)] = ∫ 𝑒𝑒−𝑝𝑝𝜕𝜕𝜃𝜃(𝑥𝑥, 𝑡𝑡)𝑧𝑧𝑡𝑡 = 𝜃𝜃�(𝑥𝑥,𝑝𝑝)+∞

0 ,

ℒ �𝜌𝜌1𝑐𝑐𝑝𝑝1
𝜕𝜕𝜃𝜃(𝑚𝑚,𝜕𝜕)
𝜕𝜕𝜕𝜕

� = 𝜌𝜌1𝑐𝑐𝑝𝑝1 ∫
𝑒𝑒−𝑝𝑝𝑡𝑡𝜕𝜕𝜃𝜃(𝑚𝑚,𝜕𝜕)

𝜕𝜕𝜕𝜕
𝑧𝑧𝑡𝑡 = 𝜌𝜌1𝑐𝑐𝑝𝑝1�𝑝𝑝𝜃𝜃

�(𝑥𝑥,𝑝𝑝) − 𝜃𝜃(𝑥𝑥, 0)�.+∞
0

� =  

 

 = �
𝜌𝜌1𝑐𝑐𝑝𝑝1�𝑝𝑝𝜃𝜃

�(𝑥𝑥,𝑝𝑝) − 𝜃𝜃0� − 𝑘𝑘1
𝜕𝜕2𝜃𝜃�

𝜕𝜕𝑚𝑚2
= 0,

𝑘𝑘1𝜃𝜃�′′ − 𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝜃𝜃
� = −𝜌𝜌1𝑐𝑐𝑝𝑝1𝑇𝑇0.

   (202) 

 

The last received equation in (196) is a non-homogeneous second-order 
differential equation with respect to the spatial variable. By analogy we transform the 
boundary conditions and receive: 

 

 �
−𝑘𝑘1

𝜕𝜕𝜃𝜃�

𝜕𝜕𝑚𝑚𝑚𝑚=0
= ℎ𝑖𝑖𝑛𝑛𝑜𝑜�𝜃𝜃� − 𝑇𝑇�𝑖𝑖𝑛𝑛𝑜𝑜�𝑚𝑚=0,

𝜃𝜃�𝑚𝑚=𝜉𝜉1 = 𝑇𝑇�𝜉𝜉 .
    (203) 
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The general solution of obtained governing equation (202) has the following 
form through undetermined coefficients: 

 

 𝜃𝜃�(𝑥𝑥,𝑝𝑝) = 𝐴𝐴𝑒𝑒
�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝑚𝑚 + 𝐵𝐵𝑒𝑒−

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝑚𝑚 + 𝜃𝜃�𝑛𝑛.ℎ(𝑥𝑥,𝑝𝑝).  (204) 

 

Where the term 𝜃𝜃�𝑛𝑛.ℎ(𝑥𝑥,𝑝𝑝) is the solution of non-homogeneous equation in the 
frequency domain, that depend on the heat source and type of ambient conditions. 
Using the conditions (203), we will construct the following system to determine the 
unknown coefficients in (204): 

 

 

⎩
⎪
⎨

⎪
⎧ 𝐴𝐴𝑒𝑒

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉 + 𝐵𝐵𝑒𝑒−

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉 = 𝑇𝑇�𝜉𝜉 − 𝜃𝜃�н.р.(𝜉𝜉,𝑝𝑝),

𝐵𝐵 �𝑘𝑘1�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
− ℎ𝑖𝑖𝑛𝑛𝑜𝑜� − 𝐴𝐴 �𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
+ ℎ𝑖𝑖𝑛𝑛𝑜𝑜� =

= 𝜃𝜃�н.р.(0,𝑝𝑝)ℎ𝑖𝑖𝑛𝑛𝑜𝑜 − ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇�𝑖𝑖𝑛𝑛𝑜𝑜 + 𝑘𝑘1
𝜕𝜕𝜃𝜃�н.р.(0,𝑝𝑝)

𝜕𝜕𝑚𝑚
.

  (205) 

 

The expression (205) will have the following equivalent matrix form 𝐴𝐴𝑥𝑥 = 𝐵𝐵, 
where: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝐴𝐴 = �

𝑒𝑒
�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉 𝑒𝑒−

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉

−𝑘𝑘1�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
− ℎ𝑖𝑖𝑛𝑛𝑜𝑜 𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
− ℎ𝑖𝑖𝑛𝑛𝑜𝑜

� ,

𝐵𝐵 = �
𝑇𝑇�𝜉𝜉 − 𝜃𝜃�н.р.(𝜉𝜉,𝑝𝑝)

𝜃𝜃�н.р.(0,𝑝𝑝)ℎ𝑖𝑖𝑛𝑛𝑜𝑜 − ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇�𝑖𝑖𝑛𝑛𝑜𝑜 + 𝑘𝑘1
𝜕𝜕𝜃𝜃�н.р.(0,𝑝𝑝)

𝜕𝜕𝑚𝑚

� ,

𝑥𝑥 = �𝐴𝐴𝐵𝐵� ,𝑢𝑢𝑚𝑚𝑘𝑘𝑚𝑚𝐴𝐴𝑢𝑢𝑚𝑚 𝑐𝑐𝐴𝐴𝑒𝑒𝑓𝑓𝑓𝑓𝑚𝑚𝑐𝑐𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝐴𝐴 𝑓𝑓𝑐𝑐𝐴𝐴𝑚𝑚 (204).

     (206) 

 

We will directly determine unknown coefficients 𝑥𝑥 by the expression 𝐴𝐴−1𝐵𝐵, if 
the matrix 𝐴𝐴 is invertible, for that reason we verify: 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧∆𝐴𝐴 = 𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
�𝑒𝑒

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉 + 𝑒𝑒−

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉
� − ℎ𝑖𝑖𝑛𝑛𝑜𝑜 �𝑒𝑒

−�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉 − 𝑒𝑒

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉
� ,

𝐴𝐴−1 = 1
∆𝐴𝐴

⎝

⎜
⎛𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
− ℎ𝑖𝑖𝑛𝑛𝑜𝑜 −𝑒𝑒−

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉

𝑘𝑘1�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
− ℎ𝑖𝑖𝑛𝑛𝑜𝑜 𝑒𝑒

�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉

⎠

⎟
⎞

.
(207) 

 

Observing the above trivial expressions, we will determine the unknown vector 
by: 

�𝐴𝐴𝐵𝐵� = 

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
�𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

−ℎ𝑖𝑖𝑖𝑖𝑖𝑖��𝜕𝜕�𝜉𝜉−𝜃𝜃�н.р.(𝜉𝜉,𝑝𝑝)�−𝑒𝑒
−�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

𝜉𝜉
�𝜃𝜃�н.р.(0,𝑝𝑝)ℎ𝑖𝑖𝑖𝑖𝑖𝑖−ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕�𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1

𝜕𝜕𝜃𝜃�н.р.(0,𝑝𝑝)
𝜕𝜕𝑥𝑥 �

∆𝐴𝐴

⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
�𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

−ℎ𝑖𝑖𝑖𝑖𝑖𝑖��𝜕𝜕�𝜉𝜉−𝜃𝜃�н.р.(𝜉𝜉,𝑝𝑝)�+𝑒𝑒
�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉
�𝜃𝜃�н.р.(0,𝑝𝑝)ℎ𝑖𝑖𝑖𝑖𝑖𝑖−ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕�𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1

𝜕𝜕𝜃𝜃�н.р.(0,𝑝𝑝)
𝜕𝜕𝑥𝑥 �

∆𝐴𝐴

⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

           (208) 

So that the particular solution for the first sub-problem will take the following 
form: 

  
𝜃𝜃�(𝑥𝑥,𝑝𝑝) = 

 

=

⎣
⎢
⎢
⎢
⎡ �𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

−ℎ𝑖𝑖𝑖𝑖𝑖𝑖��𝜕𝜕�𝜉𝜉−𝜃𝜃�н.р.(𝜉𝜉,𝑝𝑝)�𝑐𝑐ℎ��
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝑚𝑚�

∆𝐴𝐴
+

+
�𝜃𝜃�н.р.(0,𝑝𝑝)ℎ𝑖𝑖𝑖𝑖𝑖𝑖−ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕�𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘1

𝜕𝜕𝜃𝜃�н.р.(0,𝑝𝑝)
𝜕𝜕𝑥𝑥 ��𝑜𝑜ℎ��

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

𝜉𝜉−�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝑚𝑚��

∆𝐴𝐴 ⎦
⎥
⎥
⎥
⎤

+  

 

     +𝜃𝜃�н.р.(𝑥𝑥, 𝑝𝑝).     (209) 
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The inverse Laplace transform is applied term by term to (209) in accordance 
with the second expansion theorem. The numerator and denominator of the first term 
in (209) are expanded separately, by knowing the expansion formulas for hyperbolic 
functions: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ sh(x) = x + x3

3!
+ x5

5!
+ ⋯ ,

ch(x) = 1 + x2

2!
+ x4

4!
+ ⋯ ,

𝐴𝐴ℎ ��
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉 − �

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝑥𝑥� = ��

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉 − �

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝑥𝑥� +

+
��

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

𝜉𝜉−�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝑚𝑚�

3

3!
+

��
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉−�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

𝑚𝑚�
5

5!
+ ⋯

𝑘𝑘1�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝑐𝑐ℎ ��

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉� = 𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
+

𝑘𝑘1�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
��

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

𝜉𝜉�
2

2!
+

+
𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

��
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉�

4

4!
+ ⋯ ,

ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝐴𝐴ℎ ��
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉� = ℎ𝑖𝑖𝑛𝑛𝑜𝑜�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉 +

ℎ𝑖𝑖𝑖𝑖𝑖𝑖��
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝

𝑘𝑘1
𝜉𝜉�

3

3!
+

+
ℎ𝑖𝑖𝑖𝑖𝑖𝑖��

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝
𝑘𝑘1

𝜉𝜉�
5

5!
+ ⋯ .

 (210) 

 

By the second decomposition theorem that was applied in the part 3.1 we will 
analogically look for the nulls of denominators in order to deduce the inverse transform 
of the received expressions. However, in this quasi-linearized case, we will perform it 
numerically by constructing the following objective function. 

 

 
𝑘𝑘1𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝑖𝑖

ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 − 𝑡𝑡ℎ2 ��

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝑖𝑖
𝑘𝑘1

𝜉𝜉� = 𝑓𝑓(𝑝𝑝𝑛𝑛) → 𝑚𝑚𝑚𝑚𝑚𝑚.  (211) 

 

Where we present the frequency variable in a polar form 𝑝𝑝𝑛𝑛 = 𝑥𝑥𝑛𝑛 + 𝑚𝑚𝑦𝑦𝑛𝑛 =
𝑐𝑐𝑛𝑛(𝑐𝑐𝐴𝐴𝐴𝐴𝜑𝜑𝑛𝑛 + 𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚𝜑𝜑𝑛𝑛). Numerically evaluating the first several roots, enough to 
consider the fluctuations of the signal to decease for (211), we may construct the 
analytical solution of the direct first sub-problem by the following series: 
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𝜃𝜃(𝑥𝑥, 𝑡𝑡) = �
�𝑘𝑘1�

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝑛𝑛
𝑘𝑘1

− ℎ𝑖𝑖𝑛𝑛𝑜𝑜� �𝑇𝑇�𝜉𝜉 − 𝜃𝜃�н.р.(𝜉𝜉,𝑝𝑝𝑛𝑛)�𝑐𝑐ℎ ��
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝑛𝑛
𝑘𝑘1

𝑥𝑥�

𝑘𝑘1𝜌𝜌1𝑐𝑐𝑝𝑝1
ℎ𝑖𝑖𝑛𝑛𝑜𝑜2 − sech2 �

𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝑛𝑛
𝑘𝑘1

𝜉𝜉 𝑡𝑡ℎ ��
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝑛𝑛
𝑘𝑘1

𝜉𝜉� ��
𝜌𝜌1𝑐𝑐𝑝𝑝1
𝑘𝑘1𝑝𝑝𝑛𝑛

𝜉𝜉�

15

𝑛𝑛=0

e−𝑝𝑝𝑖𝑖t + 

 

+∑ �
𝜃𝜃�н.р.(0,𝑝𝑝𝑛𝑛)ℎ𝑖𝑖𝑛𝑛𝑜𝑜 − ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇�𝑖𝑖𝑛𝑛𝑜𝑜 +

+𝑘𝑘1
𝜕𝜕𝜃𝜃�н.р.(0,𝑝𝑝𝑖𝑖)

𝜕𝜕𝑚𝑚

�

⎝

⎜
⎛
𝐴𝐴ℎ

⎝

⎛
�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝑖𝑖

𝑘𝑘1
𝜉𝜉 −

−�
𝜌𝜌1𝑐𝑐𝑝𝑝1𝑝𝑝𝑖𝑖

𝑘𝑘1
𝑥𝑥⎠

⎞

⎠

⎟
⎞

e−𝑝𝑝𝑖𝑖t15
𝑛𝑛=0 + 𝜃𝜃н.р.(𝑥𝑥, 𝑡𝑡) 

           (212) 

 

Analogically we perform the same manipulations over the second sub-domain 
problem and obtain the following system with undetermined coefficients: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐴𝐴�𝑘𝑘2�

𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝑒𝑒
�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝐿𝐿 − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑒𝑒

�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝐿𝐿
� −

−𝐵𝐵 �𝑘𝑘2�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝑒𝑒−

�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝐿𝐿 + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑒𝑒

−�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝐿𝐿
� =

= ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝜃𝜃�н.р.(𝐿𝐿,𝑝𝑝) − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇�𝑜𝑜𝑜𝑜𝜕𝜕 − 𝑘𝑘2
𝜕𝜕𝜃𝜃�н.р.(𝐿𝐿,𝑝𝑝)

𝜕𝜕𝑚𝑚
,

𝐴𝐴𝑒𝑒
�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝜉𝜉1 + 𝐵𝐵𝑒𝑒−

�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝜉𝜉1 = 𝑇𝑇�𝜉𝜉 − 𝜃𝜃�н.р.(𝜉𝜉,𝑝𝑝).

   (213) 

Again, by rewriting the posed system in the matrix form 𝐴𝐴𝑥𝑥 = 𝐵𝐵, where 𝑥𝑥 is the 
vector of unknown coefficients, we obtain: 

 

⎩
⎪
⎨

⎪
⎧𝐴𝐴 = �𝑘𝑘2𝛾𝛾𝑒𝑒

𝛾𝛾𝐿𝐿 − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑒𝑒𝛾𝛾𝐿𝐿 −𝑘𝑘2𝛾𝛾𝑒𝑒−𝛾𝛾𝐿𝐿 − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑒𝑒−𝛾𝛾𝐿𝐿

𝑒𝑒𝛾𝛾𝜉𝜉1 𝑒𝑒−𝛾𝛾𝜉𝜉1
� ,

𝐵𝐵 = �ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝜃𝜃
�н.р.(𝐿𝐿,𝑝𝑝) − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇�𝑜𝑜𝑜𝑜𝜕𝜕 − 𝑘𝑘2

𝜕𝜕𝜃𝜃�н.р.(𝐿𝐿,𝑝𝑝)
𝜕𝜕𝑚𝑚

𝑇𝑇�𝜉𝜉 − 𝜃𝜃�н.р.(𝜉𝜉, 𝑝𝑝)
� .

    (214) 

 

Where 𝛾𝛾 = �
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
 for simplicity. We will verify if the matrix 𝐴𝐴 is invertible: 
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∆𝐴𝐴 = 𝑘𝑘2�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
�𝑒𝑒

�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝐿𝐿−�

𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝
𝑘𝑘2

𝜉𝜉1 + 𝑒𝑒
�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝜉𝜉1−�

𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝
𝑘𝑘2

𝐿𝐿
� +  

 

+ℎ𝑜𝑜𝑜𝑜𝜕𝜕 �𝑒𝑒
�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝜉𝜉1−�

𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝
𝑘𝑘2

𝐿𝐿 − 𝑒𝑒
�
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝

𝑘𝑘2
𝐿𝐿−�

𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝
𝑘𝑘2

𝜉𝜉1� ≠ 0.    (215) 

 

In that case the system coefficients will take the following form: 

 

 �𝐴𝐴𝐵𝐵� =

⎝

⎜
⎜
⎜
⎛
𝑒𝑒−𝛾𝛾𝜉𝜉1�ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝜃𝜃�н.р.(𝐿𝐿,𝑝𝑝)−ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝜕𝜕�𝑜𝑜𝑜𝑜𝑡𝑡−𝑘𝑘2

𝜕𝜕𝜃𝜃�н.р.(𝐿𝐿,𝑝𝑝)
𝜕𝜕𝑥𝑥 �+

+�𝑘𝑘2𝛾𝛾𝑒𝑒−𝛾𝛾𝐿𝐿+ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑒𝑒−𝛾𝛾𝐿𝐿��𝑘𝑘2𝛾𝛾𝑒𝑒−𝛾𝛾𝐿𝐿+ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑒𝑒−𝛾𝛾𝐿𝐿�
∆𝐴𝐴

−𝑒𝑒𝛾𝛾𝜉𝜉1�ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝜃𝜃�н.р.(𝐿𝐿,𝑝𝑝)−ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝜕𝜕�𝑜𝑜𝑜𝑜𝑡𝑡−𝑘𝑘2
𝜕𝜕𝜃𝜃�н.р.(𝐿𝐿,𝑝𝑝)

𝜕𝜕𝑥𝑥 �+

+�𝑘𝑘2𝛾𝛾𝑒𝑒𝛾𝛾𝐿𝐿−ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑒𝑒𝛾𝛾𝐿𝐿��𝜕𝜕�𝜉𝜉−𝜃𝜃�н.р.(𝜉𝜉,𝑝𝑝)�

∆𝐴𝐴 ⎠

⎟
⎟
⎟
⎞

.  (216) 

 

Determining the analytical solution in the frequency domain and applying 
further the second decomposition theorem we will derive the analytical solution for the 
second sub-problem in the real time domain. However, the key reason for that 
experimental design is to discuss the general peculiarities of such methodology, which 
is the necessity of determining the nulls of the received polynomials in the frequency 
domain around attenuation parameter 𝑝𝑝𝑛𝑛, that could be also considered as the inverse 
problem itself, that is we are keen to determine the characteristic roots in order to 
evaluate the decomposition, while the roots are the part of transcendental equations 
posed in the frequency domain. Meanwhile, there is a strong dependency on whether 
we implement the numerical or analytical investigations to solve the posed problem 
and the obtained results over the determined physical coefficients. For instance, if we 
will consider separately the first sub-problem of the discussed experimental design and 
rewrite its solution in the frequency domain by: 

 

𝑇𝑇(𝑥𝑥,𝑝𝑝) =

�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉−�

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝑚𝑚+

⎝

⎜
⎛
1
6��

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 �

3
𝜉𝜉3−

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
2𝑘𝑘 𝜉𝜉2�

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝑚𝑚+

+�
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
2𝑘𝑘 𝑚𝑚2−16��

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 �

3
𝑚𝑚3
⎠

⎟
⎞
�
ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖−

−𝜕𝜕𝑇𝑇𝑖𝑖ℎ.𝑖𝑖.(0)
𝜕𝜕𝑥𝑥

�

−�
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 −�

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝜉𝜉2

2𝑘𝑘 −ℎ𝑖𝑖𝑖𝑖𝑖𝑖−ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝜉𝜉2

2𝑘𝑘

− 𝜕𝜕𝑖𝑖ℎ.𝑖𝑖.
2

. (217) 
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 We will note that in such formulation the roots could be investigated by the 
solution of the following problem: 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ �𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝

𝑘𝑘
�1 − 𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝜉𝜉2

2𝑘𝑘
� = ℎ𝑖𝑖𝑛𝑛𝑜𝑜 �

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝜉𝜉2

2𝑘𝑘
+ 1� →

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘ℎ𝑖𝑖𝑖𝑖𝑖𝑖

2 = �
�
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝜉𝜉2

2𝑘𝑘 +1�

�1−
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝜉𝜉2

2𝑘𝑘 �
�

2

=
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝𝜉𝜉4

4𝑘𝑘2 +
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝜉𝜉2

𝑘𝑘 +1

1−
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝜉𝜉2

𝑘𝑘 +
𝜌𝜌2𝑐𝑐𝑝𝑝2𝑝𝑝𝜉𝜉4

4𝑘𝑘2

→

𝑝𝑝2 �𝜌𝜌
4𝑐𝑐𝑝𝑝3𝜉𝜉4

4𝑘𝑘3ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 − 𝜌𝜌2𝑐𝑐𝑝𝑝2𝜉𝜉2

𝑘𝑘2ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 � + 𝑝𝑝 � 𝜌𝜌𝑐𝑐𝑝𝑝

𝑘𝑘ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 − 𝜌𝜌2𝑐𝑐𝑝𝑝2𝜉𝜉4

4𝑘𝑘2
− 𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2

𝑘𝑘
� = 1 →

𝑝𝑝1,2 =
𝑘𝑘𝜌𝜌𝑐𝑐𝑝𝑝�𝑘𝑘𝜌𝜌𝑐𝑐𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑖𝑖

2 𝜉𝜉4+4𝑘𝑘2�ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 𝜉𝜉2−1��±4𝑘𝑘3ℎ𝑖𝑖𝑖𝑖𝑖𝑖

2 ��
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘ℎ𝑖𝑖𝑖𝑖𝑖𝑖

2 −
𝜌𝜌2𝑐𝑐𝑝𝑝2𝜉𝜉4

4𝑘𝑘2 −
𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2

𝑘𝑘 �
2
+4�

𝜌𝜌4𝑐𝑐𝑝𝑝
3𝜉𝜉4

4𝑘𝑘3ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 −

𝜌𝜌2𝑐𝑐𝑝𝑝2𝜉𝜉2

𝑘𝑘2ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 �

2𝜌𝜌2𝑐𝑐𝑝𝑝2�𝜌𝜌2𝑐𝑐𝑝𝑝𝜉𝜉4−4𝑘𝑘𝜉𝜉2�
.

            (218) 

 

These are the first two roots. However, from another side the solution (217) 
could be taken via the trigonometrical functions as: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑇𝑇(𝑥𝑥,𝑝𝑝) =

𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛�𝑖𝑖�
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉−𝑖𝑖�

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝑚𝑚��ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖−

𝜕𝜕𝑇𝑇𝑖𝑖ℎ.𝑖𝑖.(0)
𝜕𝜕𝑥𝑥 �

𝑐𝑐𝑜𝑜𝑜𝑜�𝑖𝑖�
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉���

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 +ℎ𝑖𝑖𝑖𝑖𝑖𝑖�

+ 𝜕𝜕𝑖𝑖ℎ.𝑖𝑖.
2

,

𝑇𝑇(𝑥𝑥,𝑝𝑝) =
𝑜𝑜ℎ��

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉−�

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝑚𝑚��ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖−

𝜕𝜕𝑇𝑇𝑖𝑖ℎ.𝑖𝑖.(0)
𝜕𝜕𝑥𝑥 �

𝑐𝑐ℎ��
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉��−�

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 −ℎ𝑖𝑖𝑖𝑖𝑖𝑖�

− 𝜕𝜕𝑖𝑖ℎ.𝑖𝑖.
2

.

  (219) 

 

By observing this form, we will deduce the root of denominator by: 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝑝𝑝𝑛𝑛 = 𝑘𝑘ℎ𝑖𝑖𝑖𝑖𝑖𝑖

2

𝜌𝜌𝑐𝑐𝑝𝑝
− 𝜋𝜋2𝑛𝑛2𝑘𝑘

𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2
− 𝜋𝜋2𝑛𝑛𝑘𝑘

𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2
− 𝜋𝜋2𝑘𝑘

4𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2
= 𝜆𝜆ℎ𝑖𝑖𝑛𝑛𝑜𝑜2 − 𝜆𝜆𝜋𝜋2

𝜉𝜉2
�𝑚𝑚2 + 𝑚𝑚 + 1

4
� ,

𝑝𝑝𝑛𝑛 = −𝑘𝑘𝜋𝜋2𝑛𝑛2

𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2
− 𝑘𝑘𝜋𝜋2𝑛𝑛

𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2
− 𝑘𝑘𝜋𝜋2

4𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2
= −𝜆𝜆𝜋𝜋2

𝜉𝜉2
�𝑚𝑚2 + 𝑚𝑚 + 1

4
� ,

𝑐𝑐ℎ ��𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘
𝜉𝜉� = 0,

−�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘

− ℎ𝑖𝑖𝑛𝑛𝑜𝑜 ≠ 0.

  (220) 
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 By investigations of the (220), we may note that: 
  

ℎ ��𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘
𝜉𝜉� = 0 → 𝑒𝑒

�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝑘𝑘 𝜉𝜉+𝑒𝑒−
�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝑘𝑘 𝜉𝜉

2
= 𝑒𝑒−

�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉 �1 + 𝑒𝑒2

�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉� = 0. (221) 

  

 From which we may conclude two following facts: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑒𝑒2

�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉 = −1,

𝑒𝑒−
�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝

𝑘𝑘 𝜉𝜉 ≠ 0,

2�
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝𝑚𝑚

𝑘𝑘
𝜉𝜉 = 𝑚𝑚𝜋𝜋(2𝑚𝑚 + 1),

𝑝𝑝𝑚𝑚 = −
𝑘𝑘𝜋𝜋

4𝜉𝜉2𝜌𝜌𝑐𝑐𝑝𝑝
(2𝑚𝑚 + 1) = −

𝜆𝜆𝜋𝜋

4𝜉𝜉2
(2𝑚𝑚 + 1) = −

𝜆𝜆𝜋𝜋[2𝑚𝑚+1]
4𝜉𝜉2

.

     (222) 

 

Where 𝜆𝜆 = 𝑘𝑘 𝜌𝜌𝑐𝑐𝑝𝑝⁄  and the polynomials and its derivatives of the parameter 𝑝𝑝 
will take the form: 

 

⎩
⎪
⎨

⎪
⎧ 𝜑𝜑(𝑝𝑝) = 𝑐𝑐ℎ ��𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝

𝑘𝑘
𝜉𝜉��−�𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝

𝑘𝑘
− ℎ𝑖𝑖𝑛𝑛𝑜𝑜�

𝜕𝜕𝜑𝜑
𝜕𝜕𝑝𝑝

=
�𝜌𝜌𝑐𝑐𝑝𝑝

𝑘𝑘 𝜉𝜉𝑜𝑜ℎ��
𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉��−�

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 −ℎ𝑖𝑖𝑖𝑖𝑖𝑖�−𝑐𝑐ℎ��

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘 𝜉𝜉��

𝜌𝜌𝑐𝑐𝑝𝑝𝑝𝑝
𝑘𝑘

2√𝑝𝑝

   (223) 

 

While the general solution in the time domain may be rewritten as the following 
series: 

 

𝜃𝜃(𝑥𝑥, 𝑡𝑡) = ∑

�𝜆𝜆𝜋𝜋(2𝑖𝑖+1)
2𝜉𝜉2 𝑜𝑜𝑖𝑖𝑛𝑛�

𝑥𝑥
2𝜉𝜉�𝜋𝜋[2𝑛𝑛+1]−

−12�𝜋𝜋[2𝑛𝑛+1]
��

ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖−

−𝜕𝜕𝜃𝜃𝑖𝑖ℎ.𝑖𝑖.(0)
𝜕𝜕𝑥𝑥

�

𝜉𝜉𝑜𝑜𝑖𝑖𝑛𝑛��𝜋𝜋(2𝑖𝑖+1)
2 ��𝜋𝜋𝜆𝜆(2𝑛𝑛+1)−𝑖𝑖�

2ℎ𝑖𝑖𝑖𝑖𝑖𝑖
√𝜆𝜆

𝑜𝑜𝑖𝑖𝑛𝑛��𝜋𝜋(2𝑖𝑖+1)
2 �−

−�𝜋𝜋(2𝑛𝑛+1)𝑐𝑐𝑜𝑜𝑜𝑜��𝜋𝜋(2𝑛𝑛+1)�
�

𝑛𝑛≥0 𝑒𝑒
−𝑘𝑘𝜋𝜋[2𝑖𝑖+1]

4𝜌𝜌𝑐𝑐𝑝𝑝𝜉𝜉2
𝜕𝜕
− 𝜃𝜃𝑖𝑖ℎ.𝑖𝑖.

2
.

            (224) 
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 Obviously, the analytical form will provide more exact values for the evaluation 
of the key parameters’ values, since we may increase the number of terms for preferable 
convergency rate, while the deduced expression (212) has limitations in terms of 
accuracy for each computed null of the parameter 𝑝𝑝𝑛𝑛 via some numerical method and 
we are restricted by choosing of the number of roots, whereas in (224) the accuracy 
matter is not considered at all due to analyticity of the derived expression. 

 

3.4 Derivation of the exact expressions for the coefficient’s determination in 
selected case studies 

The expressions that we received in the previous part play the key role in 
derivations of the exact analytical expressions. Here we will demonstrate the further 
steps by considering the whole problem as the unite domain, thus without decomposing 
it to sub-problems, afterwards we will utilize the information obtained in the previous 
part to receive analytical expressions for the governing coefficients. The non-
decomposed problem in the frequency domain will have the following form: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑘𝑘

𝜕𝜕2𝜃𝜃�

𝜕𝜕𝑚𝑚2
− 𝜌𝜌𝑐𝑐𝑝𝑝𝜃𝜃� = −𝜌𝜌𝑐𝑐𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕 → 𝑘𝑘𝜃𝜃�′′ − 𝜌𝜌𝑐𝑐𝑝𝑝𝜃𝜃� + 𝜌𝜌𝑐𝑐𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕 = 0,

𝑘𝑘(𝑥𝑥) 𝜕𝜕𝜃𝜃
�

𝜕𝜕𝑚𝑚
|𝑚𝑚=0 = ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝜃𝜃�|𝑚𝑚=0−ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝚤𝚤𝑛𝑛𝑜𝑜� ,

𝑘𝑘(𝑥𝑥) 𝜕𝜕𝜃𝜃
�

𝜕𝜕𝑚𝑚
|𝑚𝑚=𝐿𝐿 = ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕� − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝜃𝜃�|𝑚𝑚=𝐿𝐿 ,

�𝜃𝜃��|𝑚𝑚=𝜉𝜉 = 0, �𝑘𝑘(𝑥𝑥) 𝜕𝜕𝜃𝜃
�

𝜕𝜕𝑚𝑚
� |𝑚𝑚=0 = 0.

 (225) 

 

 Whereas its general solution in the frequency domain will have: 

 

𝜃𝜃�ℎ.𝑜𝑜.(𝑥𝑥,𝑝𝑝) = �𝐴𝐴𝑒𝑒
�
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘1

(𝑚𝑚)
+ 𝐵𝐵𝑒𝑒

−�
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘1

(𝑚𝑚)
+ 𝜃𝜃�𝑛𝑛𝑜𝑜𝑛𝑛−ℎ.𝑜𝑜.(𝑥𝑥), 𝑥𝑥 ∈ (0, 𝜉𝜉),

𝐶𝐶𝑒𝑒
�
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘2

(𝑚𝑚)
+ 𝐷𝐷𝑒𝑒

−�
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘2

(𝑚𝑚)
+ 𝜃𝜃�𝑛𝑛𝑜𝑜𝑛𝑛−ℎ.𝑜𝑜.(𝑥𝑥), 𝑥𝑥 ∈ (𝜉𝜉, 𝐿𝐿).

  (226) 

 

Where non-homogeneous solution could be derived through the sampled 
measurements by the following methodology. Using the measured temperatures, to 
obtain a smoothly differentiable and continuous functions suitable for the Laplace 
transform, we apply the interpolation polynomials of the discrete Fourier series, that 
is:  
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�
𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕(𝑡𝑡)  =   𝑎𝑎0  +  𝑎𝑎1𝑐𝑐𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡) + 𝑏𝑏1𝐴𝐴𝑚𝑚𝑚𝑚(𝜔𝜔𝑡𝑡) + 𝑎𝑎2𝑐𝑐𝐴𝐴𝐴𝐴(2𝜔𝜔𝑡𝑡) + 𝑏𝑏2𝐴𝐴𝑚𝑚𝑚𝑚(2𝜔𝜔𝑡𝑡),

𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕  =  𝑎𝑎0 + 𝑧𝑧𝑐𝑐𝐴𝐴𝐴𝐴(𝜔𝜔𝑥𝑥).
            (227) 

While the coefficients of interpolation are determined with 95% tolerance trust 
interval and presented in the below table with the following statistics: 

 

Table 3 - Statistics for the adequacy of the interpolation model  

 

Parameter 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕 
Residual sum of squares 6.19e-06 1.115e-19; 

Coefficient of determination (percentage 
of variance of dependent variable) 0.9965 1 

Adjusted determination coefficient 0.9922 - 
Standard deviation: 0.001244 - 

 

While the coefficients itself are presented by the table below and determined via 
the curve fitting by parametrical and non-parametrical interpolation: 

 

Table 4 - Interpolation coefficients determination 

 

Value 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕 
𝑎𝑎0 288.5  (288.5, 288.5) 289 
𝑎𝑎1 −0.01198  (−0.01393,−0.01002) 6.005 
𝑏𝑏1 0.006643  (0.004826, 0.008459) - 
𝑎𝑎2 0.006566  (0.004053, 0.00908) - 
𝑏𝑏2 −0.01052  (−0.01283,−0.008217) - 
𝜔𝜔 0.1863  (0.183, 0.1897) 22.49 

 

The profiles fittings will have the following interpolations: 
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Figure 26 - Interpolation profile of the samples around inwards flux boundary points 

 

 As for the initial time samples, we will have the following fit: 

 

 
 

Figure 27 - Interpolation profile of the samples at initial time 

 

 Now we may perform the Laplace transform over the boundary condition as: 

 

ℒ[𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕(𝑡𝑡)]  =  1
𝑎𝑎0

 + 𝑎𝑎1𝑝𝑝
𝑝𝑝2+𝜕𝜕2  + 𝑜𝑜1𝜕𝜕

𝑝𝑝2+𝜕𝜕2  + 𝑎𝑎2𝑝𝑝
𝑝𝑝2+4𝜕𝜕2  + 2𝜕𝜕𝑜𝑜2

𝑝𝑝2+𝜕𝜕2 = 𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕� (𝑝𝑝). (228) 
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While due to the equivalence of the polynomials order initial time samples will 
be determined analogically. By using the (228), we may determine the non-
homogeneous solution of the (226) by: 

 
𝜃𝜃�𝑛𝑛𝑜𝑜𝑛𝑛−ℎ.𝑜𝑜.(𝑥𝑥) = 𝑎𝑎

𝑝𝑝
+ 𝜌𝜌𝑐𝑐𝑑𝑑

𝑘𝑘𝜕𝜕2+𝜌𝜌𝑐𝑐𝑝𝑝
𝑐𝑐𝐴𝐴𝐴𝐴[𝜔𝜔𝑥𝑥].    (229) 

 

 Therefore, the general solution (228) in the frequency domain will have the 
following form: 

 

𝜃𝜃�𝑡𝑡.𝑜𝑜.(𝑥𝑥, 𝑝𝑝) =

⎩
⎪
⎨

⎪
⎧𝐴𝐴𝑒𝑒

�
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘1

(𝑚𝑚)
+ 𝐵𝐵𝑒𝑒

−�
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘1

(𝑚𝑚)
+ 𝑎𝑎

𝑝𝑝
+ 𝜌𝜌𝑐𝑐𝑑𝑑

𝑘𝑘1𝜕𝜕2+𝜌𝜌𝑐𝑐𝑝𝑝
𝑐𝑐𝐴𝐴𝐴𝐴[𝜔𝜔𝑥𝑥], 𝑥𝑥 ∈ (0, 𝜉𝜉),

𝐶𝐶𝑒𝑒
�
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘2

(𝑚𝑚)
+ 𝐷𝐷𝑒𝑒

−�
𝜌𝜌𝑐𝑐𝑝𝑝
𝑘𝑘2

(𝑚𝑚)
+ 𝑎𝑎

𝑝𝑝
+ 𝜌𝜌𝑐𝑐𝑑𝑑

𝑘𝑘2𝜕𝜕2+𝜌𝜌𝑐𝑐𝑝𝑝
𝑐𝑐𝐴𝐴𝐴𝐴[𝜔𝜔𝑥𝑥], 𝑥𝑥 ∈ (𝜉𝜉, 𝐿𝐿).

 

            (230) 

 

 Now, we may apply the boundary conditions from (225) and deduce the matrix 
form for determination of unknown coefficients: 

 

⎩
⎪
⎨

⎪
⎧ 𝐴𝐴𝑘𝑘1𝛾𝛾1 + 𝐵𝐵𝑘𝑘1𝛾𝛾1 − 𝛾𝛾2 = −ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑇𝑇𝚤𝚤𝑛𝑛𝑜𝑜� + ℎ𝑖𝑖𝑛𝑛𝑜𝑜(𝐴𝐴 + 𝐵𝐵 + 𝛾𝛾2),
𝐶𝐶𝑘𝑘2𝛾𝛾2𝑒𝑒𝛾𝛾2𝐿𝐿 − 𝐷𝐷𝑘𝑘2𝛾𝛾2𝑒𝑒−𝛾𝛾2𝐿𝐿 − 𝛾𝛾3 = ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕� − ℎ𝑜𝑜𝑜𝑜𝜕𝜕(𝐶𝐶𝑒𝑒𝛾𝛾2𝐿𝐿 + 𝐷𝐷𝑒𝑒−𝛾𝛾2𝐿𝐿 + 𝛾𝛾4),

𝐴𝐴𝑒𝑒𝛾𝛾1𝜉𝜉 + 𝐵𝐵𝑒𝑒−𝛾𝛾1𝜉𝜉 + 𝛾𝛾5 = 𝐶𝐶𝑒𝑒𝛾𝛾2𝜉𝜉 + 𝐷𝐷𝑒𝑒−𝛾𝛾2𝜉𝜉 + 𝛾𝛾6,
𝐴𝐴𝑘𝑘1𝛾𝛾1𝑒𝑒𝛾𝛾1𝜉𝜉 − 𝑘𝑘1𝛾𝛾1𝐵𝐵𝑒𝑒−𝛾𝛾1𝜉𝜉 − 𝛾𝛾7 = 𝐶𝐶𝑘𝑘2𝛾𝛾2𝑒𝑒𝛾𝛾2𝜉𝜉 − 𝑘𝑘2𝛾𝛾2𝐷𝐷𝑒𝑒−𝛾𝛾2𝜉𝜉 − 𝛾𝛾8.

 

            (231) 

 

 Where for the readability reasons we have denoted by introduced constants: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ �

𝜌𝜌𝑐𝑐𝑝𝑝

𝑘𝑘1
= 𝛾𝛾1,�

𝜌𝜌𝑐𝑐𝑝𝑝

𝑘𝑘2
= 𝛾𝛾2,

𝑘𝑘2𝜔𝜔𝜌𝜌𝑐𝑐𝑧𝑧

𝑘𝑘2𝜔𝜔2+𝜌𝜌𝑐𝑐𝑝𝑝
𝐴𝐴𝑚𝑚𝑚𝑚[𝜔𝜔𝐿𝐿] = 𝛾𝛾3,

𝑎𝑎

𝑝𝑝
+

𝜌𝜌𝑐𝑐𝑧𝑧

𝑘𝑘2𝜔𝜔2+𝜌𝜌𝑐𝑐𝑝𝑝
𝑐𝑐𝐴𝐴𝐴𝐴[𝜔𝜔𝐿𝐿] = 𝛾𝛾4,

𝑎𝑎

𝑝𝑝
+

𝜌𝜌𝑐𝑐𝑧𝑧

𝑘𝑘1𝜔𝜔2+𝜌𝜌𝑐𝑐𝑝𝑝
𝑐𝑐𝐴𝐴𝐴𝐴[𝜔𝜔𝜉𝜉] = 𝛾𝛾5,

𝑎𝑎

𝑝𝑝
+

𝜌𝜌𝑐𝑐𝑧𝑧

𝑘𝑘2𝜔𝜔2+𝜌𝜌𝑐𝑐𝑝𝑝
𝑐𝑐𝐴𝐴𝐴𝐴[𝜔𝜔𝜉𝜉] = 𝛾𝛾6,

𝜔𝜔
𝜌𝜌𝑐𝑐𝑧𝑧

𝑘𝑘1𝜔𝜔2+𝜌𝜌𝑐𝑐𝑝𝑝
𝐴𝐴𝑚𝑚𝑚𝑚[𝜔𝜔𝜉𝜉] = 𝛾𝛾7, 𝜔𝜔

𝜌𝜌𝑐𝑐𝑧𝑧

𝑘𝑘2𝜔𝜔2+𝜌𝜌𝑐𝑐𝑝𝑝
𝐴𝐴𝑚𝑚𝑚𝑚[𝜔𝜔𝜉𝜉] = 𝛾𝛾8.

   (232) 
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 After elementary algebraic manipulations over the system (231), we will receive 
the matrix form equation: 

 

�

1 −1 0 0
0 0 (𝑘𝑘2𝛾𝛾2𝑒𝑒𝛾𝛾2𝐿𝐿 + ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑒𝑒𝛾𝛾2𝐿𝐿) (ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑒𝑒−𝛾𝛾2𝐿𝐿 − 𝑘𝑘2𝛾𝛾2𝑒𝑒−𝛾𝛾2𝐿𝐿)
𝑒𝑒𝛾𝛾1𝜉𝜉 𝑒𝑒−𝛾𝛾1𝜉𝜉 −𝑒𝑒𝛾𝛾2𝜉𝜉 −𝑒𝑒−𝛾𝛾2𝜉𝜉

𝑘𝑘1𝛾𝛾1𝑒𝑒𝛾𝛾1𝜉𝜉 −𝑘𝑘1𝛾𝛾1𝑒𝑒−𝛾𝛾1𝜉𝜉 −𝑘𝑘2𝛾𝛾2𝑒𝑒𝛾𝛾2𝜉𝜉 𝑘𝑘2𝛾𝛾2𝑒𝑒−𝛾𝛾2𝜉𝜉
� ∗ 

∗ �

𝐴𝐴
𝐵𝐵
𝐶𝐶
𝐷𝐷

� =

⎝

⎜
⎛

𝑞𝑞0
𝑝𝑝𝑘𝑘1𝛾𝛾1

ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕� − ℎ𝑜𝑜𝑜𝑜𝜕𝜕𝛾𝛾4 + 𝛾𝛾3
𝛾𝛾6 − 𝛾𝛾5
−𝛾𝛾8 + 𝛾𝛾7 ⎠

⎟
⎞

.   (233) 

 

 By setting up the following corresponding notations: 

 

�

𝜁𝜁1 𝜁𝜁2 0 0
0 0 𝜁𝜁3 𝜁𝜁4
𝜁𝜁5 𝜁𝜁6 𝜁𝜁7 𝜁𝜁8
𝜁𝜁9 𝜁𝜁10 𝜁𝜁11 𝜁𝜁12

��

𝐴𝐴
𝐵𝐵
𝐶𝐶
𝐷𝐷

� = �

𝜁𝜁13
𝜁𝜁14
𝜁𝜁15
𝜁𝜁16

�.    (234) 

 

 We will obtain the expressions for undetermined coefficients of the system 
(231): 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝐴𝐴 =

𝜁𝜁13(𝜁𝜁3𝜁𝜁6𝜁𝜁12 −𝜁𝜁3𝜁𝜁8𝜁𝜁10 − 𝜁𝜁4𝜁𝜁6𝜁𝜁11 + 𝜁𝜁4𝜁𝜁7𝜁𝜁10)+
+𝜁𝜁16(𝜁𝜁2𝜁𝜁3𝜁𝜁8 −𝜁𝜁2𝜁𝜁4𝜁𝜁7)−𝜁𝜁15(𝜁𝜁2𝜁𝜁3𝜁𝜁12 − 𝜁𝜁2𝜁𝜁4𝜁𝜁11)+

+𝜁𝜁14(𝜁𝜁2𝜁𝜁7𝜁𝜁12 − 𝜁𝜁2𝜁𝜁8𝜁𝜁11)
𝜁𝜁1𝜁𝜁3(𝜁𝜁6𝜁𝜁12−𝜁𝜁8𝜁𝜁10)  − 𝜁𝜁1𝜁𝜁4(𝜁𝜁6𝜁𝜁11+𝜁𝜁7𝜁𝜁10 )+ 𝜁𝜁2𝜁𝜁3(𝜁𝜁8𝜁𝜁9 −𝜁𝜁5𝜁𝜁12 )+

+ 𝜁𝜁2𝜁𝜁4(𝜁𝜁5𝜁𝜁11 −𝜁𝜁7𝜁𝜁9)

,

𝐵𝐵 =
−𝜁𝜁13(𝜁𝜁3𝜁𝜁5𝜁𝜁12 − 𝜁𝜁3𝜁𝜁8𝜁𝜁9 − 𝜁𝜁4𝜁𝜁5𝜁𝜁11+𝜁𝜁4𝜁𝜁7𝜁𝜁9)−𝜁𝜁16(𝜁𝜁1𝜁𝜁3𝜁𝜁8 − 𝜁𝜁1𝜁𝜁4𝜁𝜁7)+

+𝜁𝜁15(𝜁𝜁1𝜁𝜁3𝜁𝜁12 −𝜁𝜁1𝜁𝜁4𝜁𝜁11)−𝜁𝜁14(𝜁𝜁1𝜁𝜁7𝜁𝜁12 −𝜁𝜁1𝜁𝜁8𝜁𝜁11)
𝜁𝜁1𝜁𝜁3(𝜁𝜁6𝜁𝜁12−𝜁𝜁8𝜁𝜁10)  − 𝜁𝜁1𝜁𝜁4(𝜁𝜁6𝜁𝜁11+𝜁𝜁7𝜁𝜁10 )+ 𝜁𝜁2𝜁𝜁3(𝜁𝜁8𝜁𝜁9 −𝜁𝜁5𝜁𝜁12 )+

+ 𝜁𝜁2𝜁𝜁4(𝜁𝜁5𝜁𝜁11 −𝜁𝜁7𝜁𝜁9)

,

 𝐶𝐶 =  
𝜁𝜁14(𝜁𝜁1𝜁𝜁6𝜁𝜁12 −𝜁𝜁1𝜁𝜁8𝜁𝜁10 − 𝜁𝜁2𝜁𝜁5𝜁𝜁12 +𝜁𝜁2𝜁𝜁8𝜁𝜁9)−𝜁𝜁4𝜁𝜁16(𝜁𝜁1𝜁𝜁6 −𝜁𝜁2𝜁𝜁5)+

+𝜁𝜁4𝜁𝜁15(𝜁𝜁1𝜁𝜁10 −𝜁𝜁2𝜁𝜁9)−𝜁𝜁4𝜁𝜁13(𝜁𝜁2𝜁𝜁10 −𝜁𝜁6𝜁𝜁9)
𝜁𝜁1𝜁𝜁3(𝜁𝜁6𝜁𝜁12−𝜁𝜁8𝜁𝜁10)  − 𝜁𝜁1𝜁𝜁4(𝜁𝜁6𝜁𝜁11+𝜁𝜁7𝜁𝜁10 )+ 𝜁𝜁2𝜁𝜁3(𝜁𝜁8𝜁𝜁9 −𝜁𝜁5𝜁𝜁12 )+

+ 𝜁𝜁2𝜁𝜁4(𝜁𝜁5𝜁𝜁11 −𝜁𝜁7𝜁𝜁9)

,

𝐷𝐷 =
−𝜁𝜁14(𝜁𝜁1𝜁𝜁6𝜁𝜁11 − 𝜁𝜁1𝜁𝜁7𝜁𝜁10 − 𝜁𝜁2𝜁𝜁5𝜁𝜁11 + 𝜁𝜁2𝜁𝜁7𝜁𝜁9)+𝜁𝜁3𝜁𝜁16(𝜁𝜁1𝜁𝜁6 − 𝜁𝜁2𝜁𝜁5)−

−𝜁𝜁3𝜁𝜁15(𝜁𝜁1𝜁𝜁10 −𝜁𝜁2𝜁𝜁9)+𝜁𝜁3𝜁𝜁13(𝜁𝜁5𝜁𝜁10 −𝜁𝜁6𝜁𝜁9)
𝜁𝜁1𝜁𝜁3(𝜁𝜁6𝜁𝜁12−𝜁𝜁8𝜁𝜁10)  − 𝜁𝜁1𝜁𝜁4(𝜁𝜁6𝜁𝜁11+𝜁𝜁7𝜁𝜁10 )+ 𝜁𝜁2𝜁𝜁3(𝜁𝜁8𝜁𝜁9 −𝜁𝜁5𝜁𝜁12 ) + 𝜁𝜁2𝜁𝜁4(𝜁𝜁5𝜁𝜁11 −𝜁𝜁7𝜁𝜁9)

.

(232) 
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 Afterwards we may analogically apply the above coefficients towards the 
previous methodology and determine the real time domain solution. However, since 
further we are keen to present the analytical terms for the physical coefficients 
determination itself, we continue by implementing the computations of the constructed 
system of objective functions via the Newton iterative algorithm. First of all, in order 
to construct the mentioned system, we implement two fundamental theorems of the 
operational calculus, which are the shifting and similarity that could be presented by 
the following expression: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 1

𝑝𝑝
𝑒𝑒−

�𝑝𝑝
𝜆𝜆 𝑚𝑚 → 𝐸𝐸𝑐𝑐𝑓𝑓 � 𝑚𝑚

2𝜆𝜆√𝜕𝜕
� ,

𝜕𝜕(√𝑝𝑝)

√𝑝𝑝
= 1

√𝑝𝑝
1

�𝑝𝑝
𝑎𝑎 +ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑒𝑒−
�𝑝𝑝
𝑎𝑎 𝑚𝑚 =

= 𝑎𝑎
√𝜋𝜋𝜕𝜕

∫ 𝑒𝑒−ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝜆𝜆𝜕𝜕−𝑚𝑚)−𝜏𝜏
2

4𝑡𝑡𝑧𝑧𝜏𝜏∞
𝑥𝑥
𝑎𝑎

.

    (233) 

 

 Here we substitute by 𝜉𝜉 = 𝜕𝜕+2𝜆𝜆ℎ𝜕𝜕
2√𝜕𝜕

 and deduce the solution in real time domain 
for the initially pose problem with open boundaries: 
  

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢0 �𝑒𝑒𝑐𝑐𝑓𝑓 �
𝑥𝑥

2𝜆𝜆√𝑡𝑡
� + 𝑒𝑒ℎ𝑚𝑚+𝑎𝑎2ℎ2𝜕𝜕𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 �

𝑥𝑥
2𝜆𝜆√𝑡𝑡

+ 𝜆𝜆ℎ√𝑡𝑡�� = 

 

= 𝑢𝑢0

⎣
⎢
⎢
⎢
⎡

2
√𝜋𝜋

� 𝑒𝑒−𝜕𝜕2𝑧𝑧𝑡𝑡

𝑚𝑚
2𝜆𝜆√𝜕𝜕

0

+ 𝑒𝑒ℎ𝑚𝑚+𝜆𝜆2ℎ2𝜕𝜕
2
√𝜋𝜋

� 𝑒𝑒−𝜕𝜕2𝑧𝑧𝑡𝑡
∞

𝑚𝑚
2𝜆𝜆√𝜕𝜕

+𝜆𝜆ℎ√𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

= 

 

= 𝑢𝑢0 �
2
√𝜋𝜋
∫ 𝑒𝑒−𝜕𝜕2𝑧𝑧𝑡𝑡

𝑥𝑥
2𝜆𝜆√𝑡𝑡
0 + 𝑒𝑒

𝑞𝑞
𝜆𝜆𝑜𝑜(0,𝑡𝑡)𝑚𝑚+�

𝑞𝑞
𝑜𝑜(0,𝑡𝑡)�

2
𝜕𝜕 2
√𝜋𝜋
∫ 𝑒𝑒−𝜕𝜕2𝑧𝑧𝑡𝑡∞
� 𝑥𝑥
2𝜆𝜆√𝑡𝑡

+ 𝑞𝑞
𝑜𝑜(0,𝑡𝑡)√𝜕𝜕�

�.  (234) 

 

 Where 𝑢𝑢0 is the initial temperature, 𝑞𝑞 is the heat flux on the inward boundary 
and has the following form: 

 

𝑘𝑘1𝑢𝑢0 �
2
√𝜋𝜋

+ ℎ𝑖𝑖𝑛𝑛𝑜𝑜𝑒𝑒𝜆𝜆
2ℎ𝑖𝑖𝑖𝑖𝑖𝑖

2 𝜕𝜕𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐�𝜆𝜆ℎ𝑖𝑖𝑛𝑛𝑜𝑜√𝑡𝑡� −
2
√𝜋𝜋
𝑒𝑒𝜆𝜆2ℎ𝑖𝑖𝑖𝑖𝑖𝑖

2 𝜕𝜕𝑒𝑒−�𝜆𝜆ℎ𝑖𝑖𝑖𝑖𝑖𝑖√𝜕𝜕�
2
� = 𝑞𝑞. (235) 
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 Using above deductions, now we may construct the system by introducing the 
distance 𝑢𝑢𝑖𝑖 to 𝑚𝑚𝜕𝜕ℎ measurement device: 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑢𝑢(𝑢𝑢1, 𝑡𝑡) − 𝑢𝑢0 �
𝑒𝑒𝑐𝑐𝑓𝑓 �𝜉𝜉 𝜌𝜌1𝑐𝑐1

2𝑘𝑘1√𝜕𝜕
� +

+𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉+(𝑘𝑘1𝜌𝜌1𝑐𝑐1)2ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 𝜕𝜕𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 �𝜌𝜌1𝑐𝑐1(𝜉𝜉−𝑤𝑤𝑖𝑖)

2𝑘𝑘1√𝜕𝜕
+ 𝑘𝑘1

𝜌𝜌1𝑐𝑐1
ℎ𝑖𝑖𝑛𝑛𝑜𝑜√𝑡𝑡�

� =

= 𝑓𝑓1�𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0 , �,

𝑢𝑢(𝜉𝜉 − 𝑢𝑢2, 𝑡𝑡) − 𝑢𝑢0 �
𝑒𝑒𝑐𝑐𝑓𝑓 �𝜉𝜉 𝜌𝜌1𝑐𝑐1

2𝑘𝑘1√𝜕𝜕
� +

+𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉+(𝑘𝑘1𝜌𝜌1𝑐𝑐1)2ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 𝜕𝜕𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 �𝜌𝜌1𝑐𝑐1(𝜉𝜉−𝑤𝑤𝑖𝑖)

2𝑘𝑘√𝜕𝜕
+ 𝑘𝑘1

𝜌𝜌1𝑐𝑐1
ℎ𝑖𝑖𝑛𝑛𝑜𝑜√𝑡𝑡�

� =

= 𝑓𝑓2�𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0  �,

𝑢𝑢(𝜉𝜉 + 𝑢𝑢3, 𝑡𝑡) − 𝑢𝑢0 �
𝑒𝑒𝑐𝑐𝑓𝑓 �𝜉𝜉 𝜌𝜌2𝑐𝑐2

2𝑘𝑘2√𝜕𝜕
� +

+𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑚𝑚+(𝑘𝑘2𝜌𝜌2𝑐𝑐2)2ℎ𝑜𝑜𝑜𝑜𝑡𝑡2 𝜕𝜕𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 �𝜌𝜌2𝑐𝑐2(𝜉𝜉+𝑤𝑤𝑖𝑖)
2𝑘𝑘2√𝜕𝜕

+ 𝑘𝑘1
𝜌𝜌1𝑐𝑐1

ℎ𝑜𝑜𝑜𝑜𝜕𝜕√𝑡𝑡�
� =

= 𝑓𝑓3(𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0  ),

𝑢𝑢(𝐿𝐿 − 𝑢𝑢4, 𝑡𝑡) − 𝑢𝑢0 �
𝑒𝑒𝑐𝑐𝑓𝑓 �𝜉𝜉 𝜌𝜌2𝑐𝑐2

2𝑘𝑘2√𝜕𝜕
� +

+𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑚𝑚+(𝑘𝑘2𝜌𝜌2𝑐𝑐2)2ℎ𝑜𝑜𝑜𝑜𝑡𝑡2 𝜕𝜕𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 �𝜌𝜌2𝑐𝑐2(𝜉𝜉+𝑤𝑤𝑖𝑖)
2𝑘𝑘2√𝜕𝜕

+ 𝑘𝑘1
𝜌𝜌1𝑐𝑐1

ℎ𝑜𝑜𝑜𝑜𝜕𝜕√𝑡𝑡�
� =

= 𝑓𝑓4(𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 ),
𝑢𝑢(𝜉𝜉, 𝑡𝑡) − (𝑓𝑓1) = 𝑓𝑓5�𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0 , 𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 �

𝑇𝑇𝑖𝑖𝑛𝑛𝑜𝑜 − 𝑢𝑢0 �
𝑒𝑒𝑐𝑐𝑓𝑓 �𝜉𝜉 𝜌𝜌1𝑐𝑐1

2𝑘𝑘1√𝜕𝜕
� +

+𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉+(𝑘𝑘1𝜌𝜌1𝑐𝑐1)2ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2 𝜕𝜕𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 �𝜌𝜌1𝑐𝑐1(𝜉𝜉−𝑤𝑤𝑖𝑖)

2𝑘𝑘√𝜕𝜕
+ 𝑘𝑘1

𝜌𝜌1𝑐𝑐1
ℎ𝑖𝑖𝑛𝑛𝑜𝑜√𝑡𝑡�

� =

= 𝑓𝑓6(𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 ),

𝑇𝑇𝑜𝑜𝑜𝑜𝜕𝜕 − 𝑢𝑢0 �
𝑒𝑒𝑐𝑐𝑓𝑓 �𝜉𝜉 𝜌𝜌2𝑐𝑐2

2𝑘𝑘2√𝜕𝜕
� +

+𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑚𝑚+(𝑘𝑘2𝜌𝜌2𝑐𝑐2)2ℎ𝑜𝑜𝑜𝑜𝑡𝑡2 𝜕𝜕𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 �𝜌𝜌2𝑐𝑐2(𝜉𝜉+𝑤𝑤𝑖𝑖)
2𝑘𝑘2√𝜕𝜕

+ 𝑘𝑘1
𝜌𝜌1𝑐𝑐1

ℎ𝑜𝑜𝑜𝑜𝜕𝜕√𝑡𝑡�
� =

= 𝑓𝑓7(𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20, , ℎ𝑜𝑜𝑜𝑜𝜕𝜕0  ),
𝑢𝑢(𝜉𝜉, 𝑡𝑡) − (𝑓𝑓2) = 𝑓𝑓6�𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0 ,𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 �.

 

            (236) 

 

 Further, we may introduce the vector of unknowns: 

 

𝑥𝑥0 = �𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,𝑘𝑘20, 𝜌𝜌20, 𝑐𝑐20,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0 ,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 �.   (237) 
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Also, we introduce the notation for the objective functions that should be 
minimized via the iterative approach: 

 

𝐹𝐹(𝑥𝑥) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑓𝑓1�𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0 , �
𝑓𝑓2�𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0  �
𝑓𝑓3(𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0  )
𝑓𝑓3(𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0  )
𝑓𝑓4(𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 )

𝑓𝑓5�𝑘𝑘10, 𝜌𝜌10, 𝑐𝑐10,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0 , 𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 �
𝑓𝑓6(𝑘𝑘10,𝜌𝜌10, 𝑐𝑐10,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 )
𝑓𝑓7(𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0  )

𝑓𝑓8�𝑘𝑘10, 𝜌𝜌10, 𝑐𝑐10,ℎ𝑖𝑖𝑛𝑛𝑜𝑜0 , 𝑘𝑘20,𝜌𝜌20, 𝑐𝑐20,ℎ𝑜𝑜𝑜𝑜𝜕𝜕0 �⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

.  (238) 

 

 Afterwards we may write the algorithm in the form of the following recurrent 
formula: 

 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 −𝑊𝑊−1(𝑥𝑥𝑘𝑘)𝐹𝐹(𝑥𝑥𝑘𝑘).    (239) 

 

 Where we have introduced the Wronskian matrix: 

 

𝑊𝑊 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑘𝑘1

𝜕𝜕𝜕𝜕1
𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑐𝑐1

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑘𝑘2

𝜕𝜕𝜕𝜕1
𝜕𝜕𝜌𝜌2

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑐𝑐2

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ𝑜𝑜𝑜𝑜𝑡𝑡

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑘𝑘1

𝜕𝜕𝜕𝜕2
𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑐𝑐1

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑘𝑘2

𝜕𝜕𝜕𝜕2
𝜕𝜕𝜌𝜌2

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑐𝑐2

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ𝑜𝑜𝑜𝑜𝑡𝑡

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑘𝑘1

𝜕𝜕𝜕𝜕3
𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑐𝑐1

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑘𝑘2

𝜕𝜕𝜕𝜕3
𝜕𝜕𝜌𝜌2

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑐𝑐2

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ𝑜𝑜𝑜𝑜𝑡𝑡

𝜕𝜕𝜕𝜕4
𝜕𝜕𝑘𝑘1

𝜕𝜕𝜕𝜕4
𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕4
𝜕𝜕𝑐𝑐1

𝜕𝜕𝜕𝜕4
𝜕𝜕𝑘𝑘2

𝜕𝜕𝜕𝜕4
𝜕𝜕𝜌𝜌2

𝜕𝜕𝜕𝜕4
𝜕𝜕𝑐𝑐2

𝜕𝜕𝜕𝜕4
𝜕𝜕ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕4
𝜕𝜕ℎ𝑜𝑜𝑜𝑜𝑡𝑡

𝜕𝜕𝜕𝜕5
𝜕𝜕𝑘𝑘1

𝜕𝜕𝜕𝜕5
𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕5
𝜕𝜕𝑐𝑐1

𝜕𝜕𝜕𝜕5
𝜕𝜕𝑘𝑘2

𝜕𝜕𝜕𝜕5
𝜕𝜕𝜌𝜌2

𝜕𝜕𝜕𝜕5
𝜕𝜕𝑐𝑐2

𝜕𝜕𝜕𝜕5
𝜕𝜕ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕5
𝜕𝜕ℎ𝑜𝑜𝑜𝑜𝑡𝑡

𝜕𝜕𝜕𝜕6
𝜕𝜕𝑘𝑘1

𝜕𝜕𝜕𝜕6
𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕6
𝜕𝜕𝑐𝑐1

𝜕𝜕𝜕𝜕6
𝜕𝜕𝑘𝑘2

𝜕𝜕𝜕𝜕6
𝜕𝜕𝜌𝜌2

𝜕𝜕𝜕𝜕6
𝜕𝜕𝑐𝑐2

𝜕𝜕𝜕𝜕6
𝜕𝜕ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕6
𝜕𝜕ℎ𝑜𝑜𝑜𝑜𝑡𝑡

𝜕𝜕𝜕𝜕7
𝜕𝜕𝑘𝑘1

𝜕𝜕𝜕𝜕7
𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕7
𝜕𝜕𝑐𝑐1

𝜕𝜕𝜕𝜕7
𝜕𝜕𝑘𝑘2

𝜕𝜕𝜕𝜕7
𝜕𝜕𝜌𝜌2

𝜕𝜕𝜕𝜕7
𝜕𝜕𝑐𝑐2

𝜕𝜕𝜕𝜕7
𝜕𝜕ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕7
𝜕𝜕ℎ𝑜𝑜𝑜𝑜𝑡𝑡

𝜕𝜕𝜕𝜕8
𝜕𝜕𝑘𝑘1

𝜕𝜕𝜕𝜕8
𝜕𝜕𝜌𝜌1

𝜕𝜕𝜕𝜕8
𝜕𝜕𝑐𝑐1

𝜕𝜕𝜕𝜕8
𝜕𝜕𝑘𝑘2

𝜕𝜕𝜕𝜕8
𝜕𝜕𝜌𝜌2

𝜕𝜕𝜕𝜕8
𝜕𝜕𝑐𝑐2

𝜕𝜕𝜕𝜕8
𝜕𝜕ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕8
𝜕𝜕ℎ𝑜𝑜𝑜𝑜𝑡𝑡⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

.   (240) 
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For the readability matter, we will present the explicit formulas derivation only 
for three parameters. However, by using the above notations and below derivation 
procedure explanations, it could be easily expanded towards eight parameters as well. 
Further, we will denote by 𝑎𝑎 = 𝑘𝑘

𝜌𝜌𝑐𝑐𝑝𝑝
. For the three parameters evaluation we may 

consider only the left side of multilayered domain and look for the following 
parameters: 

 

⎩
⎪
⎨

⎪
⎧𝑢𝑢(𝜉𝜉, 𝑡𝑡1) − 𝑢𝑢0 �𝑒𝑒𝑐𝑐𝑓𝑓 �

𝜉𝜉
2𝑎𝑎√𝜕𝜕1

� + 𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝜕𝜕1𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉
2𝑎𝑎√𝜕𝜕1

+ 𝑎𝑎ℎ√𝑡𝑡1�� = 𝑓𝑓1(𝑎𝑎, ℎ,𝑢𝑢0),

𝑢𝑢(𝜉𝜉, 𝑡𝑡2) − 𝑢𝑢0 �𝑒𝑒𝑐𝑐𝑓𝑓 �
𝜉𝜉

2𝑎𝑎√𝜕𝜕2
� + 𝑒𝑒ℎ𝑚𝑚+𝑎𝑎2ℎ2𝜕𝜕2𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉

2𝑎𝑎√𝜕𝜕2
+ 𝑎𝑎ℎ√𝑡𝑡2�� = 𝑓𝑓2(𝑎𝑎, ℎ,𝑢𝑢0),

𝑢𝑢(𝜉𝜉, 𝑡𝑡3) − 𝑢𝑢0 �𝑒𝑒𝑐𝑐𝑓𝑓 �
𝜉𝜉

2𝑎𝑎�𝜕𝜕3
� + 𝑒𝑒ℎ𝑚𝑚+𝑎𝑎2ℎ2𝜕𝜕2𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉

2𝑎𝑎�𝜕𝜕3
+ 𝑎𝑎ℎ�𝑡𝑡3�� = 𝑓𝑓2(𝑎𝑎, ℎ,𝑢𝑢0).

 

            (241) 

 

 The Wronskian in this case will be a 3 × 3 matrix with the minimization goal 
functions and unknown vectors: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑊𝑊 =

⎝

⎜
⎛

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0⎠

⎟
⎞

,

𝑥𝑥0 = (𝑎𝑎0,ℎ0,𝑢𝑢00),

  𝐹𝐹(𝑥𝑥) = �
𝑓𝑓1(𝑎𝑎,ℎ,𝑢𝑢0)
𝑓𝑓2(𝑎𝑎, ℎ,𝑢𝑢0)
𝑓𝑓3(𝑎𝑎, ℎ,𝑢𝑢0)

� .

     (242) 

 

 In order to perform the (238) recurrent formula, we have to determine the inverse 
of Wronskian 𝑊𝑊−1 by the Transposed matrix of Wronskian algebraic complements 
W∗

T as well as the Wronskian determinant |𝑊𝑊|, such that 𝑊𝑊−1 = W∗
T

|W|
: 
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|𝑊𝑊| =
�

�

⎝

⎜
⎜
⎜
⎛

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓1
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢0

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓2
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢0

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓3
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢0⎠

⎟
⎟
⎟
⎞

�

�
=
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑎𝑎

⎝

⎜
⎛
𝜕𝜕𝑓𝑓2
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢0

𝜕𝜕𝑓𝑓3
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢0⎠

⎟
⎞
−
𝜕𝜕𝑓𝑓1
𝜕𝜕ℎ

⎝

⎜
⎛
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢0

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢0⎠

⎟
⎞

+ 

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

�
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

� =  

 

=
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑎𝑎 �

𝜕𝜕𝑓𝑓2
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢0

−
𝜕𝜕𝑓𝑓3
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢0

� −
𝜕𝜕𝑓𝑓1
𝜕𝜕ℎ �

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢0

−
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢0

� + 

 

+
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢0

�
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓3
𝜕𝜕ℎ −

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓2
𝜕𝜕ℎ�

= 

 

=
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓2
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢0

−
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓3
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢0

−
𝜕𝜕𝑓𝑓1
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢0

+
𝜕𝜕𝑓𝑓1
𝜕𝜕ℎ

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢0

+
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢0

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓3
𝜕𝜕ℎ − 

−
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢0

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑎𝑎

𝜕𝜕𝑓𝑓2
𝜕𝜕ℎ . 

            (243) 
 
 At the same time the transposed matrix of Wronskian algebraic complements 
will take the following form: 
 

𝑊𝑊∗
𝜕𝜕 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

� −�

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

� �

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

�

−�

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

� �

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

� −�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

�

�
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

� −�
𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

� �
𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

�
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

.  (244) 

 
 Further the inverse matrix will have the following expression: 
 

𝑊𝑊−1 =
𝑊𝑊∗

𝜕𝜕

|𝑊𝑊| = 
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= 1
|𝑊𝑊|

⎝

⎜
⎛

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

− 𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

− �𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

− 𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

� 𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

− 𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

−�𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

− 𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎
� 𝜕𝜕𝜕𝜕1

𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

− 𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

−�𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

− 𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎
�

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ
− 𝜕𝜕𝜕𝜕2

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

− �𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ
− 𝜕𝜕𝜕𝜕1

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎
� 𝜕𝜕𝜕𝜕1

𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ
− 𝜕𝜕𝜕𝜕1

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎 ⎠

⎟
⎞

.  

(245) 
 
 By simplifying and opening some factors in the above expression, we may 
obtain: 
 

𝑊𝑊−1(𝑥𝑥𝑘𝑘)𝐹𝐹(𝑥𝑥𝑘𝑘) = 

 

=

⎝

⎜
⎜
⎜
⎜
⎛

�𝜕𝜕𝜕𝜕2𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕3𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

�𝜕𝜕1−�
𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕3𝜕𝜕ℎ
𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

�𝜕𝜕2+�
𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

−�𝜕𝜕𝜕𝜕2𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕2𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕1+�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕2−�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎 �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

�𝜕𝜕𝜕𝜕2𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕1−�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕2+�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎 �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ ⎠

⎟
⎟
⎟
⎟
⎞

. (246) 

 

 From the above identity, we may explicitly deduce the unknown physical 
coefficients: 

 

𝑥𝑥𝑘𝑘 −𝑊𝑊−1(𝑥𝑥𝑘𝑘)𝐹𝐹(𝑥𝑥𝑘𝑘) =  

 

=

⎝

⎜
⎜
⎜
⎜
⎛
𝑎𝑎𝑘𝑘 −

�𝜕𝜕𝜕𝜕2𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕3𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

�𝜕𝜕1−�
𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕3𝜕𝜕ℎ
𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

�𝜕𝜕2+�
𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

ℎ𝑘𝑘 −
−�𝜕𝜕𝜕𝜕2𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕2𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕1+�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕2−�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎 �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝑢𝑢0𝑘𝑘 −
�𝜕𝜕𝜕𝜕2𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕1−�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕2+�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎 �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ ⎠

⎟
⎟
⎟
⎟
⎞

. (247) 

 

That gives us an opportunity to determine the following identities for recurrent 
evaluation of the physical parameters: 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑎𝑎𝑘𝑘+1 = 𝑎𝑎𝑘𝑘 −

�𝜕𝜕𝜕𝜕2𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕3𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

�𝜕𝜕1−�
𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕3𝜕𝜕ℎ
𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

�𝜕𝜕2+�
𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

,

ℎ𝑘𝑘+1 = ℎ𝑘𝑘 −
−�𝜕𝜕𝜕𝜕2𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕2𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕1+�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕2−�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎 �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

,

𝑢𝑢0𝑘𝑘+1 = 𝑢𝑢0𝑘𝑘 −
�𝜕𝜕𝜕𝜕2𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕1−�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎 �𝜕𝜕2+�

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎 �𝜕𝜕3

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

−𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕ℎ
𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

+𝜕𝜕𝜕𝜕1𝜕𝜕𝑜𝑜0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ −

𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

.

 (248) 

 

 The only part that we have to demonstrate for the derived set of parameters is 
the construction of the system of partial derivatives expressions: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

−𝑢𝑢0

⎣
⎢
⎢
⎢
⎡− 𝜉𝜉

𝑎𝑎2
2
√𝜋𝜋
𝑒𝑒−

𝜉𝜉2

4𝑎𝑎2𝑡𝑡1 + 2𝑎𝑎𝑒𝑒ℎ𝜉𝜉𝑒𝑒𝑎𝑎2ℎ2𝜕𝜕1𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉
2𝑎𝑎√𝜕𝜕1

+ 𝑎𝑎ℎ√𝑡𝑡1� −

−
𝑒𝑒ℎ𝜉𝜉𝑒𝑒𝑎𝑎

2ℎ2𝑡𝑡12𝑒𝑒
� 𝜉𝜉
2𝑎𝑎�𝑡𝑡1

+𝑎𝑎ℎ�𝑡𝑡1�
2

�− 𝜉𝜉
2𝑎𝑎2�𝑡𝑡1

+ℎ√𝜕𝜕1�

√𝜋𝜋 ⎦
⎥
⎥
⎥
⎤

= 𝜕𝜕𝜕𝜕1
𝜕𝜕𝑎𝑎

,

−𝑢𝑢0

⎣
⎢
⎢
⎢
⎡− 𝜉𝜉

𝑎𝑎2
2
√𝜋𝜋
𝑒𝑒−

𝜉𝜉2

4𝑎𝑎2𝑡𝑡2 + 2𝑎𝑎𝑒𝑒ℎ𝜉𝜉𝑒𝑒𝑎𝑎2ℎ2𝜕𝜕2𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉
2𝑎𝑎√𝜕𝜕2

+ 𝑎𝑎ℎ√𝑡𝑡2� −

−
𝑒𝑒ℎ𝜉𝜉𝑒𝑒𝑎𝑎

2ℎ2𝑡𝑡22𝑒𝑒
� 𝜉𝜉
2𝑎𝑎�𝑡𝑡2

+𝑎𝑎ℎ�𝑡𝑡2�
2

�− 𝜉𝜉
2𝑎𝑎2�𝑡𝑡2

+ℎ√𝜕𝜕2�

√𝜋𝜋 ⎦
⎥
⎥
⎥
⎤

= 𝜕𝜕𝜕𝜕2
𝜕𝜕𝑎𝑎

,

−𝑢𝑢0

⎣
⎢
⎢
⎢
⎡− 𝜉𝜉

𝑎𝑎2
2
√𝜋𝜋
𝑒𝑒−

𝜉𝜉2

4𝑎𝑎2𝑡𝑡3 + 2𝑎𝑎𝑒𝑒ℎ𝜉𝜉𝑒𝑒𝑎𝑎2ℎ2𝜕𝜕3𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉
2𝑎𝑎�𝜕𝜕3

+ 𝑎𝑎ℎ�𝑡𝑡3� −

−
𝑒𝑒ℎ𝜉𝜉𝑒𝑒𝑎𝑎

2ℎ2𝑡𝑡32𝑒𝑒
� 𝜉𝜉
2𝑎𝑎�𝑡𝑡3

+𝑎𝑎ℎ�𝑡𝑡3�
2

�− 𝜉𝜉
2𝑎𝑎2�𝑡𝑡3

+ℎ�𝜕𝜕3�

√𝜋𝜋 ⎦
⎥
⎥
⎥
⎤

= 𝜕𝜕𝜕𝜕3
𝜕𝜕𝑎𝑎

.

 (249) 

 

 Which are the partial derivatives with respect to the first physical parameter. 
Then we have the similar system for the second parameter: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
−𝑢𝑢0

⎣
⎢
⎢
⎢
⎡(𝜉𝜉 + 2𝑎𝑎2𝑡𝑡1)𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝜕𝜕1𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉

2𝑎𝑎√𝜕𝜕1
+ 𝑎𝑎ℎ√𝑡𝑡1� −

−2 𝑒𝑒
� 𝜉𝜉
2𝑎𝑎�𝑡𝑡1

+𝑎𝑎ℎ�𝑡𝑡1�
2

𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝑡𝑡1𝑎𝑎√𝜕𝜕1
√𝜋𝜋 ⎦

⎥
⎥
⎥
⎤

= 𝜕𝜕𝜕𝜕1
𝜕𝜕ℎ

,

−𝑢𝑢0

⎣
⎢
⎢
⎢
⎡(𝜉𝜉 + 2𝑎𝑎2𝑡𝑡2)𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝜕𝜕2𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉

2𝑎𝑎√𝜕𝜕2
+ 𝑎𝑎ℎ√𝑡𝑡2� −

−2 𝑒𝑒
� 𝜉𝜉
2𝑎𝑎�𝑡𝑡2

+𝑎𝑎ℎ�𝑡𝑡2�
2

𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝑡𝑡2𝑎𝑎√𝜕𝜕2
√𝜋𝜋 ⎦

⎥
⎥
⎥
⎤

= 𝜕𝜕𝜕𝜕2
𝜕𝜕ℎ

−𝑢𝑢0

⎣
⎢
⎢
⎢
⎡(𝜉𝜉 + 2𝑎𝑎2𝑡𝑡3)𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝜕𝜕3𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉

2𝑎𝑎�𝜕𝜕3
+ 𝑎𝑎ℎ�𝑡𝑡3� −

−2 𝑒𝑒
� 𝜉𝜉
2𝑎𝑎�𝑡𝑡3

+𝑎𝑎ℎ�𝑡𝑡3�
2

𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝑡𝑡3𝑎𝑎�𝜕𝜕3
√𝜋𝜋 ⎦

⎥
⎥
⎥
⎤

= 𝜕𝜕𝜕𝜕3
𝜕𝜕ℎ

.

,  (250) 

 
 For the third physical parameter, which is the initial temperature in this case, we 
construct the following system: 
 

⎩
⎪
⎨

⎪
⎧−�𝑒𝑒𝑐𝑐𝑓𝑓 �

𝜉𝜉
2𝑎𝑎√𝜕𝜕1

� + 𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝜕𝜕1𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉
2𝑎𝑎√𝜕𝜕1

+ 𝑎𝑎ℎ√𝑡𝑡1�� = 𝜕𝜕𝜕𝜕1
𝜕𝜕𝑜𝑜0

,

−�𝑒𝑒𝑐𝑐𝑓𝑓 � 𝜉𝜉
2𝑎𝑎√𝜕𝜕2

� + 𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝜕𝜕2𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉
2𝑎𝑎√𝜕𝜕2

+ 𝑎𝑎ℎ√𝑡𝑡2�� = 𝜕𝜕𝜕𝜕2
𝜕𝜕𝑜𝑜0

,

−�𝑒𝑒𝑐𝑐𝑓𝑓 � 𝜉𝜉
2𝑎𝑎�𝜕𝜕3

� + 𝑒𝑒ℎ𝜉𝜉+𝑎𝑎2ℎ2𝜕𝜕3𝑒𝑒𝑐𝑐𝑓𝑓𝑐𝑐 � 𝜉𝜉
2𝑎𝑎�𝜕𝜕3

+ 𝑎𝑎ℎ�𝑡𝑡3�� = 𝜕𝜕𝜕𝜕3
𝜕𝜕𝑜𝑜0

.

  (251) 

 
 After we have derived all necessary terms, we may conclude that (248) are the 
explicit analytical expressions for the physical parameter’s determination together with 
the above depicted notations and observations. 
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CONCLUSION 
 

 The presented PhD thesis was completed in the accordance to all necessary 
provisions and legislation standards. During the implementation of the conducted 
work, there were performed international research and pedagogical practices. All 
derivations and deductions were performed in cooperative advisory contacts with the 
local and research supervisors. General results approbations were described and 
published in [93 – 94]. 
 The posed problems in the current thesis were completed to the full extent and 
beyond, since we have demonstrated the general analytical inverse analysis 
methodology derived towards the multiphysical processes with layered structure and 
various formulations of the boundary conditions along with homogenized and non-
homogenized measurement samples. 
 Beside the achieved goal, the presented thesis results are the fruitful subject for 
the further fundamental investigations, since it presents and discusses principal 
epistemology that could be enriched further to extend the general formulation of the 
inverse problems theory in terms of the regularization, stability, and solution derivation 
issues.  
 We may also conclude that the constructed multiphysical mathematical and 
computer models present separate interest in terms of the derived analytical 
expressions, mentioned as the direct problems in our work. The expressions obtained 
by various approaches, including the integral transforms, functional constructions and 
proving the posed lemmas and theorems could be utilized further in sense of the 
technical engineering or theoretical investigations. 
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APPENDIX A - Notes for the conjugate problem derived for the 
thermoelastic stress analysis inverse methodology analytical solution 
 

The conjugate model (A.1) – (A.4), deduced in the multilayered medium: 𝑥𝑥 ∈
Ω: 
 

𝜌𝜌𝑐𝑐 𝜕𝜕𝜕𝜕
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� = 0 .     (A.1) 
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 Further we utilize the Laplace transform towards the above model: 
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By applying the conjugate boundary conditions, we deduce that: 
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  (A.6) 
 

 While the inverse Laplace transform has the following form: 
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We have implemented the following properties of the Laplace transform: 
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Here we have utilized the Heaviside step function and the Dirac delta function 

respectively:  
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