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INTRODUCTION 

 

 The relevance of the work.  The theory of inverse problems is one of the most 

frontier techniques in non-destructive control analysis approach that allows to study 

the state of dynamical system without any exploitation termination. However, the lack 

of analytical solutions in mentioned theory depends on primary issue connected with 

inverse problems which is ill-posedness of the proposed algorithms. Due to that fact 

most of numerical investigations also lead to an increase of technical complications in 

terms of perseverance of the solution at desired accuracy level and convergency rate. 

In presented study we investigate layered medium terrain via convective heat and 

moisture transfer analysis with the inverse theory approach that eventually should be 

utilized for ecological state explorations, but not limited only by that area of use as we 

will show further. In fact, the appliance of multi-physical model leads to possibility of 

finding inter-connections among various identification problems. We may identify set 

of parameters, geometrical domain, boundary, or initial conditions with the help of 

inverse theory approach, while presented case study with multilayered domain 

considered as soil demonstrates some typical peculiarities of the suggested 

methodology and it’s both practical relevance and significance. In any environment 

system soil is presented by the multilayered non-homogeneous structure which works 

as an indicator factor of the air pollution and ground water purity level. However, to 

study the deterioration of the air-soil interaction system often requires both 

investigations on site and laboratory experiments that leads to increase of time and 

production cost needed for exploitation. With the help of inverse analysis 

methodologies, we strive to save both types of resources increasing the precision of 

received results. Although the theory of inverse problems is undergoing rapid 

development in both numerical and analytical exploitations, most of existed methods 

are still requiring comprehensive algorithmic implementations.  

 Accelerated industrial and urban expansion in both developed and developing 

countries leads to an increase in number of contaminated sites and thus the necessity 

of keeping the soil pollution rate under constant monitoring. Since the deterioration 

state of soil structures depends on numerous factors such that porosity level, 

conductibility rate, ground slope, vegetation and various erosions, there is a set of 

parameters that should be controlled through the modeling via multi-physical process 

investigation that is considered in current work.  

 The inverse analysis methodology for multi-physical models leads to possibility 

of determination of cross-related parameters that allow us to determine the current state 

of dynamical system by non-destructive method and keep it under control via constant 

monitoring, that eventually should be automized. Analytical approach allows to 

simplify the suggested algorithms, to derive additional tools useful for analyzing 

complementary non-primary parameters, those which are not terms of the governing 

equation of the model or take implicit form of action. 

 Practical significance. In practice it is of high importance to be able to operate 

with highly trusted data, having precise measurements of parameters for exploration of 
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any dynamical system. Small error in measurement may lead to disastrous 

circumstances during the control stage of considered domain. We may consider the 

design stage of artificial structure or the soil state exploitation, however in both cases 

there is a necessity to operate with some metrological techniques and involve the 

measurement of a priory data, which highly affect our posterior judgments over the 

estimation. Lack of stabilization factors in most cases leads to unpredictable results 

while implying the inverse analysis methodology. Therefore, analytical investigations 

should be a useful mathematical apparatus for estimation of key physical parameters 

and in some cases even fields itself. In almost all cases inverse problems are ill posed 

problems and numerical investigations lead to complications related to dealing with 

regularization or strict stability criteria conditions. At the same time the destructive 

control investigations usually leading to termination of exploitation of the considered 

process in dynamical system is not preferable by most industries. Sampling of the 

ground measurements in terms of environmental hazardous circumstances should not 

be neglected too. In such perspectives suggested methodology of non-destructive 

control identification acts as useful expertise tool. 

 Thesis objective. The primary goal of presented dissertation thesis is to design 

an analytical approach for inverse analysis methodology utilized for exploitation of 

multilayered medium terrain state by identifying key physical parameters of the 

considered dynamical system. Such system may be modeled as multilayered soil or 

key plate structural elements of artificial structures. The methodology designed should 

be universal regardless of the appliance area, weather it is an environmental or 

industrial dynamical system and bring new prospective in the study of inverse problems 

theory applications.   

 Dissertation work novelty.   Suggested state of the art methodology unifies 

sampled postulates of the theory of inverse problems, operational and variational 

calculus, selected elements of functional analysis and dimensionality reduction 

techniques seeking for analytical expressions by observing derived integral relations 

from the posed general equations that describe multi-physical processes key parameters 

set identification. Most of inverse theory approaches imply numerical algorithms that 

give only prescribed error-tolerance as the resulting terms. At the same time existing 

algorithms mostly deal with one-dimensional cases due to the complexity of posed 

strict stability conditions or regularization parameters. Although there are useful 

numerical exploitations that provide smoothed numerical results, in most cases there is 

an immense demand in such resources as computational cost and time for such 

algorithms. 

Presented methodology allows to reduce three-dimensional case to one 

dimensional preserving the properties of initial state and give opportunity to expand 

the area of its application to more than conductivity phenomena, for instance elasticity 

analysis or vibration theory and electromagnetism by studying quasi-linearized 

analogues of original problems. The problem of parameters and domain identifications 

are studied, however the posed functionals may be applied for boundary conditions 

identification as well with minor alterations. Posed coefficients matrixes of derived 

systems of linear equations play special role as fertile foundation for further theoretical 
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investigations as well as the received analytical expressions in frequency and time-

dependent domains. Utilization of the spectral analysis exploitations of posed operators 

has high potential relation to compactness properties investigations of the operator 

theory. 

Personal contributions of doctoral student. Design of computational 

algorithm for the derived analytical expression and software construction, writing and 

publishing research papers in international reviewed scientific journals with impact 

factor included in both Scopus and JCR databases, participation in popular-science 

faculty seminars and international scientific-practical conference.   

Approbation of results. The dissertation work results were reported on: 

- Popular-science seminars of Faculty – School of Applied Mathematics at 

Kazakh-British Technical University. 

- Semestrial research work of doctoral students reporting meetings. 

- Materials of VIII international scientific-practical conference: «Science 

and education in the modern world: challenges of the xxi century» - 2021, April. 

- Published research article in first quartile journal according to Journal 

Citation Report and 96 Journal Impact Factor percentile according to Science Citation 

Index Expanded following up to date JCR issue. 

- Published research article in first quartile journal according to Journal 

Citation Report and 79 Journal Impact Factor percentile according to Science Citation 

Index Expanded following up to date JCR issue. 

- Experimental case study comparison with computational algorithm results 

derived by analytical investigations for conductivity posed problem. 

- Research internship collaboration at Polytechnic University of Milan, 

department of mathematics, Milan, Italy. 

Provisions submitted for defense. 

1. Derived analytical expressions and designed computational algorithm for 

inverse problem of multi-physical processes of thermoelastic deformation 

and heat and moisture transfer. 

2. Expanded designed methodology towards quasi-linearized dimensional 

reduction of thermoelastic stress analysis model along with the exact 

expressions of mathematical model explorations. 

3. Discovered properties of the transformed operators in the frequency domain 

in terms of the nulls identification of characteristic polynomials around 

attenuation parameter and further construction of transformation 

decomposition for construction of transcendental equations.  

 Dissertation work structure. The presented thesis consists of 106 pages, 27 

figures, 4 tables, introduction, three main parts, conclusion, references and 3 

appendixes. 

In the first part there is a description of main postulates, formulations of the 

inverse problems theory and literature review of the existed investigations on discussed 
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topic along with discussed peculiarities of posed models investigated in presented 

work. 

The second part of presented thesis provides general mathematical formulation 

of the posed problem, main derivations, and proofs along with the algorithm 

description and some aspects of the analytical expressions and posed experimental 

measurements for the practical part. 

 The core of the thesis is located in the third part of the work and intended to 

give general overview of the obtained results and their analysis for variety of the posed 

models. 
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1 INVERSE ANALYSIS METHODOLOGY APPLIED FOR EQUATIONS OF 

MATHEMATICAL PHYSICS GENERAL OVERVIEW 

 

This chapter presents general overview of the methodology for inverse theory 

problems applied for the partial differential equations, it contains main peculiarities, 

some historical overview of existed approaches along with the previous theoretical 

investigations. It also describes variations of the posed models with discussions over 

advances for each of them. 

 

1.1. The development of the theory of inverse problems methodology 
 

Although the basis mathematical formulation of the inverse problems theory was 

firstly introduced in the second quarter of the XX century by Soviet-Armenian 

physicist Viktor Ambarzumian [1] during his examination of the inverse Sturm-

Liouville problem for determination of the vibration string equation, most of the 

implementations of the theory were conducted intuitively throughout the history of the 

humankind. The conceptual idea of the inverse problem theory lies in inversion of the 

cause-and-effect relationships. Initially, we should describe the idea of the direct 

problem, when for obtained set of input parameters, well-defined geometrical 

characteristics and continuously posed initial-boundary conditions we aiming to 

determine the field or some other quantity of interest via sequentially received solution 

or numerical algorithm. In this case from the given causes, we determine their effects 

over investigated domain and the relationship is direct in such case. Whereas in the 

case of the inverse problems, we are determining the causes by observing the effects 

that they are producing. Therefore, we may declare that such analogues of the inversely 

posed problem were always processed by individuals who were aiming to determine 

the reasons for observable phenomena at some point. For instance, around 375 BC the 

Greek philosopher Plato in his work Republic described a famous allegory of the cave 

[2], where people were reconstructing an image of the object by observing its shadows 

on the cage’s wall, this is a typical example of the inverse problem. Another ancient 

philosophical epistemology that produced a great usage of the inverse analysis 

methodology was presented by Aristotle’s arguments for the sphericity of the earth [3], 

where he provided evidence both theoretical and empirical. One of the arguments was 

made by observing the segments of the shape of the moon’s eclipse, stating that it 

always preserves a convex form. Another fruitful proposition Aristotle derived by 

observing the night sky, stating that by changing position on Earth surface, some 

spectator will discover different allocations of stars, that is not possible in a planar 

shape case. More advanced philosophical formulations of the inverse theory problems 

were enriched by Immanuel Kant in his Critique of pure reason transcendental 

psychology revising epistemology and metaphysics of a priory conditions of the human 

cognition [4].  Such formulations gave basis for defining the nonlinear connections 

between posterior epistemology and preliminary estimations over the studied object or 

process, which lied in the foundation of inverse problem classical formulation. Such 
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formulation always operates with additionally given data, that is a priory epistemology, 

and that is the key element which is necessary for obtaining solution of the inverse 

problem, which itself is a posterior estimation over investigated matter. From 

engineering perspectives, first general contributions to the study of the theory of 

inverse problems were done by mathematician and physicist John William Strutt [5], 

when he was making experiments with string vibrations and by the frequency of its 

oscillations determined the strength and other elastic parameters of that string 

performing purely inverse analysis methodology. Around the same time Konrad 

Schlumberger performed his experimental resistance method, when by electric 

propulsion injected through the soil medium, he measured an electric potential of the 

ground [6]. These illustrative examples represent how throughout the development of 

technological stage, the theory of inverse problems was undergoing dynamical and 

rapid historical evolution. Depending on the increase in necessities of engineering 

industries different classes of the inverse theory appeared. The inverse coefficients 

problems are setting in order to determine the coefficients involved either in governing 

equations or initial-boundary conditions for considered process. Other classes of 

inverse problems like identification problems are dealing with the domain 

reconstruction by determining the geometrical properties of considered boundaries. In 

some cases, it is possible to identify the boundary condition itself and by solving the 

retrospective inverse problem we may obtain initial conditions of considered 

dynamical system.  

Principal property of mostly all inverse problems is the ill-posedness due to 

sensitivity of obtained solution regarding the input parameters. Initially introduced by 

Hadamard [7] in the beginning of the XX century notion of well-posedness for 

mathematical models describing physical phenomena, requires existence and 

uniqueness of the solutions along with continuous dependence on the data, - the former 

requirement closely connected to stability concept. In case of inverse problems all three 

criteria could be violated. However, for most cases the inverse problems require 

regularization procedure in order to overcome the third criterion. Various approaches 

appeared throughout the evolutionary development of the inverse problems. For 

instance, the automatic selection of regularization parameter in Tikhonov 

regularization, based on the generalized cross-validation method [8] and appear to be 

a numerical optimization algorithm. Meanwhile the convergence issues near the global 

minimum are addressed by the changing the variables in optimization problem or 

modifying the least-square problem. However, the obtained estimates effectiveness is 

typically presented by conducted numerical experiments and this is another feature of 

inverse problem evaluation procedure.  In recent times, different modern methods have 

been developed to solve inverse transfer problems, such as heuristic search method [9], 

neural network-based method [10], and dynamic Bayesian network method [11].  The 

numerical computations, even though it may be quite efficient for determination of 

inverse problems key goals, are not supplying us with functional relationship between 

characteristics and effects of influencing factors and the time for analytical 

computations in most cases is rather short. However, the analytical estimators require 

simplified geometrical configurations and should be explicit as was revealed in [12].  
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Some additional methods to deal with the irregularities were actively 

investigated in recent time. One of such examples is the machine learning based 

approach for inverse identification of heat flux demonstrated in [13], where authors 

presented an efficient and robust inverse approach to obtain the heat flux distribution 

on the tool rake face in a case of oblique cutting, which was including the tool nose 

radius investigations, studying the dependency of the proposed algorithm on the 

number of input data, the optimization strategy sampling, and the general performance 

of the selected ML-based approach. Another example is an inverse estimation of 

boundary heat flux using particle swarm optimization method is described in [14], 

where authors apply different Artificial Neural Network models to facilitate faster 

computations and perform the Particle Swarm Optimization combined Bayesian 

framework to quantify modeling error. At the same time, good example of empirical 

data utilization could be found in [15], where authors present a study of inverse natural 

convection-conduction heat transfer for in-line tube heat exchanger in a hot box with 

experimental data, stating that the accuracy of the chosen flow model as well as the 

near-wall treatment requires detailed experimental verification, since it can affect the 

accuracy of the numerical results obtained. Thus, authors conclude that the selection 

of an appropriate flow model is important. There are also some Bayesian models used 

to solve a two-dimensional inverse heat transfer problem of gas turbine discs described 

in [16]. Authors state that Bayesian method could be built to calculate heat transfer on 

both the upstream and downstream surfaces of discs from simulated temperature 

measurements, reducing the ill-posedness of the inverse problem. In such case, the 

accuracy of the Bayesian method depends on the sampling of the standard deviation in 

the prior distribution, and according to findings, the best accuracy is obtained when it 

is twice the maximum of posed Biot number. Solution of an inverse heat conduction 

problem with third-type boundary conditions well reflected by [17], where the authors 

developed an algorithm to solve inverse conduction problems by matrix inversion. The 

posed algorithm was applied to a slab with Robin boundary conditions on one wall, in 

a case when the tests were conducted for both simulated and experimental temperature 

distributions. Overall, authors verified that the algorithm is indeed accurate and tolerant 

of noise when the sampled data are adequately filtered. Some inaccuracies in the 

inverse heat conduction problem solution and their effect on the estimation of heat 

fluxes were described in [18], where the authors demonstrated that there are 

unavoidable issues that inherent to quenching experiments that may lead to significant 

overestimation of the surface temperature in the initial instants of the experiment, 

stating that is undesirable to relate the surface temperature estimation with boiling 

regime at initial conditions. Inverse analysis of mould-casting interfacial heat transfer 

towards improved castings could be found in [19], where the authors present a correct 

information about the interfacial heat transfer coefficient (IHTC) at the mould-casting 

interface, while the quality of caste materials is crucially dependent on the rate of 

change of heat transfer across the mould-casting interface during the process of 

solidification and cooling of the investigated casting materials. In some cases, the 

utilization of the special function is applied, like the Trefftz numerical functions used 

for solving inverse heat conduction problems, that are widely discussed in [20]. 
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Authors present a concept of solving the inverse heat conduction problem with the 

utilization of a linear combination of functions that satisfy the differential equation in 

terms of identity property. It was proved that sampled Trefftz functions construct a 

complete system of functions necessary to develop the solution to the heat conduction 

equation. However, in a case of radiative heat transfer the governing equation is ill-

conditioned and requires a special technique called regularization to make it amenable 

to stable numerical solution. For instance, some well-known techniques, such as 

Tikhonov regularization, and truncated singular value decomposition are discussed for 

such inverse problem in [21], where the authors discuss the results on methods based 

on metaheuristics, namely simulated annealing as well as some machine learning 

techniques based on neural networks. Ther are also discussion over numerical and 

experimental verification of the single neural adaptive technology with real-time 

inverse method for solving inverse heat conduction problems in the study [22], where 

authors show that the derived algorithm has stronger anti-interference ability and 

adaptability, based on ingenious experimental platform that was designed. In 

mentioned study, authors estimate unsteady boundary heat flux of one-dimensional 

heat conduction problem via the numerical and experimental tests, which verifies the 

effectiveness of the proposed inverse method. At the same time, in [23] authors discuss 

the forward problem data, interpolating functions that are developed to relate source 

heat input and location to temperature samples on the wall, downstream of the source. 

Advancing the posed problem, by posing the prediction of 3D natural convection heat 

transfer characteristics in a shallow enclosure with experimental data, authors discuss 

suitable flow model in [24], stating that obtained estimates are consistent with the 

existing correlation. It was also observed that thermocouple response time affects the 

heat flux estimates with inverse methods in [25], where authors proposed new 

correction method for applications with fast cooling or heating by using simplified 

model and a calibration test to estimate the response time, evaluating the effects of the 

thermocouple noise, data filtering and heat loss. In some cases, for stable sequential 

solution of inverse heat conduction problem, the optimal hybrid parameter sampling 

could be applied. For instance, the proposed ridge estimator in [26], which is based on 

the sum of the bias and variance errors of the heat flux, where authors derived new 

stability condition for sampling the governing coefficient by separate control of the 

stability of input and initial errors data in order to deal with the ill-posed nature of the 

inverse heat conduction problem. There were also successful examples of using exact 

solution of the heat conduction equation, presented in [27], when authors were 

investigating the surface heat flux in planar water-jet cooling of moving hot solid and 

obtained the heat flux profile of thin plate along with the high spatial resolution. It also 

correlates with the implementation of the Fourier’s inverse problem when it could be 

supervised by the optimization problem for determination of the thermal diffusivity 

[28] by minimizing the residual function between the model predictions and the 

experimentally sampled data. Another study presents a novel approach for solving 

inverse heat conduction problems in case of one-dimensional domain by considering 

the moving boundary and temperature dependent material properties, where authors 

described in [29] two thermocouples that were used to measure temperature at two 
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interior locations inside the considered medium while the front boundary used to 

experience a recession process, that is moving towards the back surface. They have 

concluded that the developed method can be applied for calculating the surface heat 

flux in applications that involve case with moving boundary and large temperature 

variations such as the ablative thermal protection system. The local heat transfer 

investigation could be also utilized for characterization of thermal behavior of a micro 

pulsating heat pipe as was shown in [30], where authors described the temperature 

distribution of condenser by measuring data using the infrared camera and by solving 

the inverse heat conduction problem estimated the local heat flux discussing the 

variations of input data. While modulating heat transfer characteristics, it could be 

shown that some effect of rotating fluid with Taylor column phenomenon may occur, 

as was discussed in [31], where researchers presented a comparative study made 

between low Reynolds number heat transfer and steady high Reynolds number heat 

transfer revealing a broad perspective into the flow-physics of the problem. At the same 

time, there are cases when the inverse problem approach was used for investigation of 

solid concentration in solid–liquid two-phase flow, like the authors in [32] 

demonstrated for the case with horizontal pipeline, using the correction method for 

estimations based on forward problem error and estimating the solid concentration rate. 

Meanwhile the another aspects of inverse problem posedness, like the impulse response 

methods can be used to quantify the surface heat flux in multi-layer materials as was 

described in [33], where authors presented results over case study for components in 

which there are limited subsurface (internal) temperature measurements providing a 

foundation for deducing the heat flux estimators from a subsurface heat flux sensor, 

maintaining a high-frequency response. The non-iterative inversion of loadings could 

be utilized in case of isogeometric boundary elements as widely discussed in [34] when 

considering the transient heat transfer problems in cases of inhomogeneous materials. 

The authors investigate application of the implementation of basis function expansion 

and regularization scheme improving the accuracy and noise resistance of boundary 

condition inversion. It also correlates with thermal boundary condition modeling via 

the inversion modeling based on Green's function and regularization method as was 

presented in [35] where authors considered commercial aircrafts, precisely the inner 

wall of aircraft cabin, presenting additionally the model validation through the 

experimentally received data. Regardless of the numerical approach, an analytical 

methods of the inverse problem utilization could be also applied for empirical 

investigations, as was presented in [36], where authors investigated the periodical heat 

transfer problems of multilayer rocks calibrating the thermal energy storage in case of 

underground mines, revealing some crucial aspects of applicability and accuracy of the 

proposed analytical solution and valuable guidance for proper layer sampling. Beside 

that, some topological designs could be also utilized for forced convection heat transfer 

problems, as was presented in [37] by considering the deep generative model or solving 

complex topology optimization problems regarding the laminar and turbulent heat 

transfer problems solutions. Along that, the cooling configurations could be 

determined via the local heat transfer characteristics by experimental approach as 

described in [38], where the authors reveal results over analysis of inverse heat 
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conduction problem by discrete energy balances considering transient heat transfer 

measurements. Meanwhile another methodology such as the element differentiation 

method could be utilized  transient heat transfer problems with phase change, as well 

studied in [39] for the phase change case, when the interface nodes and the outer 

boundary nodes were correlated with the flux equilibrium condition that resulted in 

estimator derivation for the validation of the effectiveness and accuracy of proposed 

methodology. Some other variations of the posed problem could be found in [40], 

where authors present a valuable result by considering the mechanism of heat transfer 

in two-layer porous materials with the heat generation stating that the total energy 

balance in system becomes zero according to thermodynamic law. Although, the study 

was conducted by purely numerical approach, authors have revealed some useful 

aspects for the proposed approximation algorithm, such as the sensitivity to the input 

data. Another coefficient identification problem solved by the integral local parameters 

identification coupled with the least squares method was studied in [41], where authors 

determined fluid specific heat capacity and heat transfer coefficient based on multiple-

case joint analysis in heat exchangers  proposing a novel methodology and computing 

the relative identification errors. Physically different type of proposed problem in terms 

of circumferentially non-uniform heat flux was investigated over the effect of flow 

boiling heat transfer in a horizontal tube and described in [42], where authors 

determined heat transfer coefficients via an inverse problem model and concluded that 

pressure drop was not affected by the heat flux condition. The heat and mass transfer 

in micropolar nanofluids flow numerically analyzed in [43] by the finite volume 

approach. The authors have revealed that  a high vortex viscosity parameter value 

produces a weak rate of concentration field and has significant behavior in a case when 

thermophoresis parameter. Interesting findings of the heat transfer of single-jet 

impingement cooling may be found in [44], where authors have discussed an 

experimental case study, revealing conditions for obtaining macroscale data of the 

cooling process, while the dissipated heat flux was estimated by solving a 2D inverse 

heat conduction problem. Another application of the eigenfunction-based solution 

could be found in [45], where the authors presented one-dimensional solid-liquid phase 

change heat transfer problems solution with advection considering variety of the 

problem parameters, including Stefan and Peclet numbers, improving the theoretical 

understanding of phase change heat transfer in the presence of advection.  

Another important aspect is the nonlinearity, which also affects the posedness 

procedure of inverse problem methodology. Such an example of investigations may be 

found in [46], where authors propose a surrogate model based with active interval 

densifying method provided for solving the uncertain nonlinear inverse problem. The 

study also presents a numerical experiment with its feasibility, computational accuracy, 

and efficiency level. Alternate research [47] shows the direct and inverse 

reconstruction of the heat flux via the multiresolution formulation with temperature 

measurement devices located over multidimensional solid in hypersonic flow. The 

approach is based on development of quadrature formulas for the convolution product 

construction between special wavelets and Green’s function basing on iso-parametric 

mapping of three-dimensional geometries. Another example is the heat and mass 
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transfer of nanoparticles on mixed convective flow studied along with the impact of 

Richardson number in [48], where authors considered non-Newtonian liquid, revealing 

the existence of the solutions for the critical values of governing parameter. The 

establishment of the heat transfer model of solid rocket motor nozzle expansion section 

based on roughness wall with the help of empirical and numerical computations is 

presented in [49], where researchers demonstrate that the proposed segment method 

gives the error between computed parameter by the proposed heat transfer model and 

numerical experiment is controlled within 21% and 13% in the first and second 

segments respectively, and that he increase of the depth of temperature measuring 

devices in different segments accelerates the corresponding time response. Another 

experimental study on heat transfer performance and pressure drop characteristics is 

discussed by group of scientists in [50], where presented results demonstrated that the 

pressure gradients and friction factors with the standard Shah and Darcy's correlations 

are in good agreement with the local and average heat transfer coefficients. The 

question of the inverse transfer function identification studied for high-frequency 

pressures in [51] by the special pressure generators with different geometric parameters 

for the proposed methodology. The conductance of the multidimensional simulations 

of the heat transfer problem over the rectangular cylinders discussed in [52], where 

authors discussed the relationship between the Nusselt numbers with flow regimes. It 

was revealed that aspect ratios amplify the total heat transfer due to an enlargement in 

the heat transfer surfaces in a case of forced convection around isothermal cylinders. 

Another inverse improvement of the thermal performance was suggested in discussion 

of numerical experiments in [53] performed by authors for the ribbed channel in a case 

of pentagonal geometry with V-shapes. It was derived that the pentagonal V-shape 

geometry of a rib has higher thermal-hydraulic performance along with a slight high 

the pressure loss penalty rate. The analysis of heat transfer at polymer interface during 

over-molding was developed via study of thermoplastic elastomers discussed in [54], 

where authors used an inverse heat conduction problem to derive the time evolution of 

the surface temperature for the inserted and the injected material while computations 

were done by unidirectional scheme with the boundary conditions determined 

empirically.  The singularly perturbed stationary models of heat and mass transfer 

implemented with a nonlinear thermal diffusion coefficient studied for 

multidimensional thermal structures in [55]. The new approach was presented by 

implementation of the asymptotic analysis methods and solving the inverse problem of 

reconstructing the temperature dependences. While the distributed heat transfer 

coefficient was investigated in a case study of CPU cooling in [56], where the authors 

presented optimizing integrated heat spreaders and revealed that the multi-objective 

optimization schemes produced the best overall heat transfer coefficient derivation. 

Another special Darcy Forchheimer flow of hybrid nanofluid was analyzed in heat 

transfer analysis study of a group of researchers in [57], where authors performed the 

analysis for the multiple shape effects over a curved stretching surface by transforming 

the equations into a collection of first-order problems using the shooting method. The 

phase-field methodology for interfacial heat and mass transfer in two-phase flows was 

described in [58] ,where authors demonstrated the computational model and found that 
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two-scalar model is much more accurate for realistic problems with large diffusivity 

ratios numerically predicting the evolution of heat and mass transfer rates. The falling 

film sensible heat transfer in a case of round horizontal tubes was numerically 

simulated in [59], where the authors also compared the local heat transfer coefficient 

distribution with the analytical heat transfer models in order to predict the heat transfer 

performance over horizontal tube surfaces. The study of flash pulse infrared thermal 

wave testing presented in case of three-dimensional ice shape detection was completed 

in [60] with the help of Levenberg-Marquardt (LM) method based on the inverse heat 

transfer problem leading to further discoveries in exploration of effective accurate and 

quantitative identification methodology. Some comprehensive correlation performed 

for the prediction of the heat transfer rates were numerically simulated in [61] for a 

case of a single droplet in dropwise condensation regime in order to determine the 

conduction heat transfer parameter in a sessile droplet geometry for a large range of 

dynamic contact values angle and Biot number parameter. The performance of the mini 

channel heat sinks was enhanced by utilizing the corona winds and investigated 

numerically in [62] via a full-scale three-dimensional model. The authors deduced that 

the electric field creates a vortex which in turn also causes the flow of mixing in the 

vicinity of the heated surface, disturbing the thermal boundary layer, which results in 

consequently increase of the heat transfer rate due to parameters configuration altering. 

Another novel inverse analysis methodology was presented in [63], where authors 

solve inverse identification problem for determination of the temperature-dependent 

thermal conductivity in transient heat conduction problem with the help of element 

differential method combining it with the Levenberg-Marquardt algorithm. Authors 

results show that the proposed method gives good accuracy level, efficiency and 

robustness in identifying the temperature-dependent thermal conductivity dealing with 

non-linearity with the help of special function iteratively optimizing the objective 

function optimizing the unknown thermal parameter. Successful utilization of the 

integral transform could be found in [64] in a case of heat transfer analysis of 

compressible laminar flow regime in a parallel-plates channel geometry for a coupled 

nonlinear mathematical model via the Generalized Integral Transform Technique 

(GITT) that is the hybrid numerical-analytical method. The [65] presents study over 

derivation of an inverse problem solution in a case of vertical plate cooling in air as a  

comparative study, where authors deduced new formula for the Nusselt number via the 

temperature measurement methodological approach. Some classical results are 

modernized by implementing the novel adjustments, such as the fractional Caputo-

Fabrizio derivatives studied in [66], in terms of analysis of heat mass transfer of 

generalized second grade fluid, where authors solve the system of governing equations 

through Laplace transform including in study the effects of chemical reaction, heat 

source and porous media. It could be also observable that turbulent mixed convection 

flows inverse problem can be solved via the surrogate optimization approach, as 

demonstrated in [67] by researchers, where they utilize the space-time Riemannian 

barycentric interpolation and deduce genetic algorithm approach for inverse parameter 

identification showing delivery of good approximations of the optimal solutions within 

less than two minutes. The heat transfer performance of the conjugate heat dissipation 
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effect in high-speed rotating free-disk system of aero-engines was comprehensively 

evaluated in [68], where authors deduced that the heat transfer temperature and Nusselt 

number parameter of the free disk are strongly correlated along with the rotating Mach 

number and rotating Reynolds number parameters values, revealing by the analysis 

that the heat dissipation is a critical factor that affect the accurate determination of the 

heat transfer performance for the turbine disk. Alongside, the carbon nanotubes under 

an electric field heat transfer performance due to natural oil convection was 

investigated in [69], where researchers found useful multiparameter correlation for 

better understanding of the impact of variety of physical coefficients on the heat 

transfer in annular spaces, revealing also that it may help to predict exact values of the 

Nusselt number. The reliability assessment for non-stationary random thermal load was 

analyzed by stochastic heat transfer model via the explicit time-domain method in [70], 

where it was deduced that suggested approach may be extended for general stochastic 

problems governed by various physical laws, and with the help of explicit expressions, 

the statistics of the considered random system responses could be efficiently 

determined. Some benchmark solutions are presented in [71] ,where the authors 

considered the heat and mass transfer model for  nanofluid flow over porous domain 

of cylinder geometry with chemical reaction participation and viscous dissipation 

effects performing a parametric study and deducing that the curvature parameter  value 

directly affects the local skin friction coefficient and velocity value as well. The inverse 

uncertainty quantification problem in transient models solution has correlation with the 

effects of mesh refinement, as was investigated in [72] by a group of researchers, where 

they have revealed that the computed relative absolute error between empirically 

sampled data and code prediction results was critically decreased upon incorporating 

the input parameter uncertainties that were determined with the help of maximum 

likelihood estimate and the maximum a posterior methodologies. Some useful review 

on the heat transfer in a case of asphalt pavements along with urban heat island 

mitigation methods could be found in study [73], where it was demonstrated that 

insulation materials also increase the surface temperature of the asphalt mixture, 

meanwhile in a case when the higher thermal emissivity is available, a lower surface 

temperature could be observed by altering the thermal conductivity parameter value. 

The inverse analysis could be also utilized for determination of temperature 

distribution in cold forging as was shown in [74], where authors demonstrate that it is 

recommended to obtain the proper value of Taylor-Quinney coefficient from an inverse 

procedure since it may vary due to material and processing condition. The coupling of 

the finite difference and Monte-Carlo methods in the direct simulation could be utilized 

for moving impingement heat transfer in a case of three-dimensional rarefied hydrogen 

gas jet as presented in [75], where the researchers deduced the structural parameters 

that satisfy the temperature control requirements in the substrate by determination 

using the proposed comprehensive model revealing the inverse correlation of the 

impingement distance. At the same time, the thermal conductivity dependence on 

temperature, this is inversely proportionally by the linear functions of temperature 

fields are well studied in [76], where the authors examined the free convective flow of 

viscous fluid regime through the heated uniform and perpendicular wavy surface by 
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numerical investigations, revealing the rate of heat transfer, the skin friction 

coefficient, the isotherms and streamlines, while the system of nonlinear partial 

differential equations solved via implementation of the finite difference implicit 

scheme coupled with the Keller-box technique. Overall, the presented above review, 

demonstrates active interest of the utilization of inverse methodological approaches in 

heat transfer problems coupled with various physics in recent times, base on 

combination of classical methods and novel findings in computational and analytical 

investigations on the topic discussed in current work. 

 

1.2. The principal peculiarities of inverse problems formulation 
 

Practically most of inverse problems are set in opposite to the direct problems 

formulation, which depicts functional transformation of element from space of input 

data to another functional space, i.e.: 

 𝐴:𝑄 → 𝐹: ∀𝑓 ∈ 𝐹, ∃𝑞 ∈ 𝑄, 𝐴𝑞 = 𝑓.    (1) 

 

The former notation typically means that by acting via operator 𝐴 over some 

element 𝑞 from observable space of input configuration state of considered dynamical 

system, we obtain the field distribution from the functional space 𝐹, so called model 

response, and such solution should exist, be unique and preserve continuous 

dependence on the initial distribution. However, since in the case of inverse 

methodology we are aimed to determine elements 𝑞 from received observations 𝑓, and 

such approach could result in infinitely many solutions or lack of the solution at all, 

while the initial data in such case critically depends on observations, resulting in 

unstable solution, that all depends on whereas the operator 𝐴 is invertible or not. In 

most cases, we should set up the norm with existing global minimum, depicting the 

variation between observable and predicted responses, i.e.: 

 𝐽(𝑞) = ‖𝐴𝑞 − 𝑓‖2 → 𝑚𝑖𝑛.    (2) 

 

We treat (2) as the functional minimization problem, where 𝐽(𝑞) possesses 

several necessary properties that usually allows us to solve the inverse problem for 

identification of the model parameters. Meanwhile, for the regularization reasons, 

some altitude parameter should be also introduced, i.e.: 

 𝛼‖𝐽‖2 + 𝐽(𝑞) = 𝑇𝛼(𝑞) → 𝑚𝑖𝑛.    (3) 

 

 For instance, the Tikhonov regularization (3), where the parameter 𝛼 could be 

sampled empirically or by some autonomous approach. In the case of inverse problem, 

the input data is taken as the observed or measured distribution of considered field or 

the initial approximations or guesses of either Neumann or Robin coefficients, initial 
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data functional relationship, or the geometrical characteristics, while the problem is 

formulated to estimate or determine exact or more precise values for initial 

approximations for such data. In this case, we may encounter several scenarios. The 

first scenario is that the number of data could be more than the number of unknown 

variables and in such case the solution may not exist. In another scenario, the number 

of unknown variables may be above than the number of initial data points, and that 

may lead to the case, when we have infinitely many solutions or again it may not exist. 

In the case, when initial data was sampled with some perturbation, i.e., error due to 

measurement device accuracy, we gain unstable solution due to the crucial dependency 

of inverse problem solution on input parameters.  In the case of analytical approach 

many issues posed by numerical methodology are disappearing.  In (1) an element 𝑞 

may be regarded as a model and 𝐴 as the forward map, while 𝑓𝑜𝑏𝑠 is produced 

observable data and the left part as model response to input data 𝑞. We may convert 

the measurements into our model parameters by inverting the map 𝐴 as: 

 𝑞 = 𝐴−1𝑓𝑜𝑏𝑠.      (4) 

 

 Our observations may not contain enough information and additional data could 

be required, that may come from physical prior information on mutual dependence of 

parameter values. Even if 𝐴 is considered as being a square matrix, it can have no 

inverse, being rank deficient, so that solution of (4) will be not unique. In such case the 

solution of posed inverse problem will be undetermined. If we will have more 

equations than unknown the solution will be represented by overdetermined system. If 

the noise corrupts obtained observations so that 𝑓𝑜𝑏𝑠 will lie outside the space 𝐹 of 

possible responses to our model parameters, the solution to (4) may not exist. Another 

comprehensive issue appears when we are aiming to determine several parameters of 

model inputs at the same time, especially of different nature, such as the physical and 

geometrical characteristics of the model. In such case some crucial limitations 

regarding an incompleteness in observable data are limiting this possibility. Meanwhile 

the issues described for the formulation (1) – (4) are considered for single forward map, 

i.e., when the operator acting over field has homogeneous nature, saying that we 

observe single physical process. However, most physical processes are occurring in 

combined nature, for instance, heat and moisture transfer, or the thermoelastic bending, 

where investigated fields are in mutual, often non-linear, dependencies. Since the 

numerical approaches for former formulations will lead to unpredictable complexity, 

analytical investigations play more important role here. By using the functional 

derivation technique, based on considered minimization approach above, the iterative 

algorithm includes construction of the linear metric space that allows us to derive the 

conjugate problem and further obtain necessary computational formulas. Initially, we 

investigate the posed model with our approximated parameter values, sampled for 

initial iteration, then we observe the difference of model response with re-evaluated set 

of parameters: 
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∆(𝐴𝑞) = 𝐴𝑛+1𝑞𝑛+1 − 𝐴𝑛𝑞𝑛 = ∆𝑓 = 𝑓𝑛+1 − 𝑓𝑛.   (5) 

 

 Constructing the self-adjoint operator for ∆𝐴, we should obtain the conjugate 

problem, which analytical or numerical solution provides us necessary elements for 

derivation of ∆𝑞. 
 

1.3. The principal peculiarities of considered formulations for direct multi-

physical problems. 
 

In our work, we were aimed to consider coupled equations of mathematical 

physics and through investigations over analytical solutions derivations, solve an 

inverse problem to obtain model parameters, physical coefficients, and geometrical 

characteristics. For this reason, firstly, we considered posed heat and moisture transfer 

as a model coupled equation of mathematical physics with various formulations of 

boundary conditions: I (Dirichlet), II (Neumann) and III (Robin) types. Afterwards, we 

observed different geometrical formulations of the problem, considering one-

dimensional, two-dimensional, and three-dimensional cases, including non-

homogeneous multilayered structures. Finally, our aspirations were aimed on 

expansion of derived methodology towards different physical fields, analogically 

varying dimensions, boundary conditions and homogeneity of posed structure. We will 

start our explanation by demonstrating general posed problems below that were 

considered in this work and discussing their peculiarities depending on the derived 

methodology. 

As was mentioned above, our initial approach was to consider the convective 

heat and moisture transfer model for homogeneous structure. The approach was to 

model multi-physical process via the coupled system of partial differential equations 

in multi-layered system. For that reason, we have considered the model discussed in 

our main reference [77]. The paper studies N-layered structure with general thickness 𝐻, boundary points 𝑧𝑘(𝑘 = 0,𝑁̅̅ ̅̅ ̅), 𝑧0 = 0, 𝑧𝑁 = 𝐻 with 𝑘-th layer considered as the 

interval [𝑧𝑘−1, 𝑧𝑘], ℎ𝑘 = 𝑧𝑘 − 𝑧𝑘−1 considered as the thickness of the layer and the 

governing equation as: 

 𝜌(𝑧)𝑐𝑝(𝑧)𝛾(𝑧) 𝜕𝑇𝜕𝑡 − 𝜕𝜕𝑧 (𝛼(𝑧) 𝜕𝑇𝜕𝑧) = 𝐶𝑏(𝑧) ( 𝜕𝜕𝑧 (𝜂(𝑧) 𝜕Ω𝜕𝑧) + 𝜕𝜕𝑧 (𝜇(𝑧) 𝜕𝑇𝜕𝑧)). 

           (6) 

 

 Here we investigate two fields simultaneously. The first one is the non-stationary 

temperature field, 𝑇(𝑧, 𝑡) measured in kelvins, which reflects amount of heat passing 

through the unit volume of considered layer thickness at given instance of time. 

Another major field is the moisture field Ω(𝑧, 𝑡), which depicts the moisture level and 

generally depends on the same spatial and time parameters as the temperature field and 

could be measured in specific humidity unit, that is the weight of water vapor per unit 

weight of air or the grams of water vapor per kilogram of air. Other physical properties 
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acting in governing equations are 𝜌(𝑧) – the soil density, 𝑐𝑝(𝑧) – specific heat capacity 

of soil, 𝛾(𝑧) – specific gravity of soil, 𝛼(𝑧) – thermal conductivity of soil, 𝜂(𝑧) – soil 

moisture diffusion, 𝜇(𝑧) – thermal transfer coefficient of soil, 𝐶𝑏(𝑧) – coefficient of 

convective heat transfer of soil. As could be seen from the definitions of the governing 

coefficients, all of them are depending on spatial parameter, however we should also 

note their dependency on the temperature and moisture fields, that results in nonlinear 

posedness of the considered problem. The structure under consideration may also be 

anisotropic and nonhomogeneous, which provides us with tensor form equation 

posedness, in case if we would consider the three-dimensional real case, i.e., 𝑧̅ =[𝑥𝐼 , 𝑥𝐿] × [𝑦𝐼 , 𝑦𝐿] × [𝑧𝐼 , 𝑧𝐿], where {𝑥, 𝑦, 𝑧} being the orthonormal standard basis set 

coordinate system. As for the boundary and initial conditions, our main reference 

studies following open boundaries and continuity conditions for the fluxes between the 

layers represented by the system of equations: 

 

{   
  
   𝑇(𝑧, 0) = 𝑇0(𝑧), Ω(𝑧, 0) = Ω0(𝑧),(𝛼(𝑧) 𝜕𝑇𝜕𝑧 + ℎ(𝑇 − 𝑇𝑎))𝑘=0 = 0,(𝜂(𝑧) 𝜕Ω𝜕𝑧 + 𝛽(Ω − Ω𝑎)𝑘=0 = 0,𝑇|𝑘=𝑁 = 𝑇𝐻(𝑡), Ω|𝑘=𝑁 = Ω𝐻(𝑡),[𝛼(𝑧𝑘) 𝜕𝑇𝜕𝑧]𝑧𝑘 = [𝜂(𝑧) 𝜕Ω𝜕𝑧 + 𝜇(𝑧) 𝜕𝑇𝜕𝑧]𝑧𝑘 = 0,[𝑇]𝑧𝑘 = [Ω]𝑧𝑘 = 0.

   (7) 

 

 Typical set of conditions with measured temperature and moisture values on the 

outlet of domain and initial conditions chosen as continuous functions, could be also 

sampled via the following approximations: 

 { 𝑇(𝑧, 0) = 12 𝑎𝑇𝑘(𝑧 − 𝑧𝑘−1)2 + 12 𝑏𝑇𝑘(𝑧 − 𝑧𝑘−1) + 𝑐𝑇𝑘,Ω(𝑧, 0) = 12𝑎Ω𝑘(𝑧 − 𝑧𝑘−1)2 + 12 𝑏Ω𝑘(𝑧 − 𝑧𝑘−1)2 + 𝑐Ω𝑘. (8) 

 

Where the set of coefficients {𝑎𝑇𝑘 , 𝑏𝑇𝑘 , 𝑐𝑇𝑘, 𝑎Ω𝑘 , 𝑏Ω𝑘 , 𝑐Ω𝑘} are the subject for determination 

via inverse problem methodological approach, – in such case we would pose the 

retrospective inverse problem, however we may also suggest such approximation for 

the boundary conditions sampled measurements 𝑇𝐻(𝑡) and Ω𝐻(𝑡). The analytical 

solution of the posed system (6) – (8) was obtain via the differential matrix Riccati 

equation in the frequency domain. Obviously, we may solve problems of heat and 

moisture transfer separately by introducing the transition functions, consequently 

homogenizing the sampled measurements. For instance, the following direct problem 

with the boundary condition of the third kind, that is the convective heat exchange 

between the surface and the environment, i.e., heating or cooling by the fluid flow 
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around the domain, also known as linear homogeneous boundary conditions and the 

same initial conditions as in the system (7): 

 

     
𝜕𝑇𝜕𝑡 = 𝛼 𝜕2𝑇𝜕𝑧2 + 𝜔(𝑧, 𝑡).    (9) 

  𝜔(𝑧, 𝑡) = 𝑃(𝑧)𝑄(𝑡).    (10) 

 (𝛼1 𝜕𝑇1𝜕𝑧 + 𝛽1[𝑇 − 𝑇𝑎])𝑘=0 + ℵ1𝑗1(𝑡) = 0.   (11) 

             (𝛼2 𝜕𝑇𝜕𝑧 + 𝛽2[𝑇 − 𝑇𝑎])𝑘=𝑁 + ℵ𝑁𝑗𝑁(𝑡) = 0.   (12) 

 

Here both the (11) and (12) equations we may consider as the Newton's law or 

the Newton's equation of convection, whereas it is also possible to consider for 

accuracy and thermal slip - the speed of the gas on the surface, together with the Navier-

Stokes system and continuity equations. As could be observed the decomposed source 𝜔(𝑧, 𝑡) represented by separate functions (10) could be rewritten only in terms of the 

homogenized sampled measurements and in such case non-homogeneous (11) and (12) 

equations we may rewrite using the transition function: 

 𝑢(𝑧, 𝑡) = 𝑇(𝑧, 𝑡) − 𝜓(𝑧, 𝑡).    (13) 

 

 That will lead us to the homogeneous system: 

 𝛼 𝜕𝜓(𝑧,𝑡)𝜕𝑧 = −ℵ𝑗(𝑡).    (14) 

 

{  
  𝜓1(0, 𝑡) = 𝑇𝑎1 ,𝜓𝑁(𝑙𝑁 , 𝑡) = 𝑇𝑎2,𝜓𝑘(𝑙𝑘, 𝑡) = 𝜓𝑘+1(𝑙𝑘+1, 𝑡),𝛼𝑘 𝜕𝜓𝑘(𝑙𝑘,𝑡)𝜕𝑧 = 𝛼𝑘+1 𝜕𝜓𝑘+1(𝑙𝑘+𝑡,𝑡)𝜕𝑧 .   (15) 

 

 The advanced peculiarity of such problem formulation is that the analytical 

determination of nonstationary transfer potential fields in multilayer systems could 

obtained using transformations with the Green's function as demonstrated in [78], 

which is determined in accordance with the boundary conditions (15) or without the 

Green’s function as shown in [79] and via the Fourier variables decomposition method. 

In our work we will demonstrate the received solution in frequency domain via Laplace 

direct and inverse transforms and derivation of the inverse problem for coefficients 

determination via the conjugate problem formulation and its analytical solution 

consequential deduction.   
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 In our work we have considered several variations of posed boundary conditions 

for system (9) – (12) and their solution. For instance, when we have both sides as 

isolated boundaries, or one of the side open with second boundary being isolated, or 

the mixed boundary conditions, such as that on one side of our domain we have the 

heat flux, and another side is the open boundary. For the former formulated problem, 

we have sampled empirically received experimental design data. In each case of the 

posed models, it was possible to evaluate certain number of parameters simultaneously 

via the inverse problems methodological approach due to special peculiarities of each 

model that we will discuss in the main part of the presented thesis.  

 Another principal peculiarity that we may distinguish was noted from 

considering the expansion of the designed methodology towards connections with 

various physical fields. For instance, presented in our work thermoelastic heat transfer 

of the three dimensional horizontally bend plate with thickness ℎ. In that case, we 

observed the Sophie Germain equation: 

 𝜌ℎ 𝜕2𝑊𝜕𝑡2 = −𝐷∆∆𝑊 − ∆𝑀𝑇 + 𝑞.   (16) 

 

 Where last term 𝑞 is load per unit area of plate, 𝑀𝑇 is the bending moment, 

induced by the thermal effect, that we will relate via another system of the heat transfer 

posed model, the coefficient 𝐷 – cylindrical stiffness, related by the expression: 

 𝐷 = 𝐸ℎ312(1−𝜈2).     (17) 

 

 Here we also have elasticity parameters: 𝐸 – the Young’s modulus, 𝜈 – the 

Poisson coefficient. When the heat is induced through the medium, material of the 

observed domain starts to resist, and internal forces aroused inside the observed domain 

could be summed via the integral expression: 

 𝑀𝑇 = 2𝜇𝛼 ∫ 𝑇(𝑥, 𝑦, 𝑧)𝑧𝑑𝑧ℎ/2−ℎ/2 .    (18) 

 

 In the last expression, we obtain another set of elasticity parameters, such as 𝛼 

– the coefficient of the linear expansion, and 𝜇 – the Lame’s coefficient, being 
independent of temperature and expressed as: 

 𝜇 = 𝐸2(1+𝜈).      (19) 

 

 Furthermore, have the temperature field, that depends on three spatial 

parameters, being non-stationary, we pose the following model to relate the stress-

energy dissipation quantities with thermal term by the introduced heat flux 𝜎 = 𝑘∇𝑇: 
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𝜕𝑇𝜕𝑡 = 𝑘∇2𝑇.      (20) 

 𝑇|𝑡=0 = 𝑇𝑖𝑛𝑖𝑡.     (21) 

 𝑇|𝛤 ∝ 𝑡.      (22) 

 𝜎|𝑧=−ℎ2 = 𝜎|𝑧=ℎ2 = ℎ𝜔1,2.   (23) 

 

 Since the posed system (20) – (23) has dimension 𝑅3, it is necessary to present 

reduction, that we will demonstrate by using the locally one-dimensional splitting 

scheme, reducing multidimensional problem to the sequence of one-dimensional 

equations. Further peculiarities of the discussed above problems will be noted during 

the presented inverse analysis methodology derivation process in the main part of 

current thesis. 
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2 ANALYTICAL EXPRESSIONS DERIVATION TECHNIQUES APPLIED 

FOR INVERSE ANALYSIS OF MATHEMATICAL PHYSICS EQUATIONS 

 

Current section presents main postulates formulated for the derivation stages of 

analytical expressions obtained for inverse problems posed for multi-physical 

processes. It also presents discussion on formulation of variations of the posed direct 

models along with their analytical solutions derivation methodologies, experimental 

posed design for sampling the measurements utilized for homogenized models, solved 

in both real and frequency-time dependence, multilayered domain.  

 

2.1. Homogenization of the direct multiphysical mathematical model in both 

real and frequency time domains. 

 

 The discussed system (6) – (7) from the first part of current thesis postulates with 

relation between two physically governed fields. Due to that reason the homogenized 

solution, presented in [77] suggests introducing the transition functions for both fields 

as: 

 { 𝜏(𝑧, 𝑡) = 𝑇(𝑧, 𝑡) − 𝑇0(𝑧),𝜔(𝑧, 𝑡) = Ω(𝑧, 𝑡) − Ω0(𝑧).       (24) 

 

 Which allows us further to utilize the layer stripping method towards the Laplace 

transform of 𝜏(𝑧, 𝑡) and 𝜔(𝑧, 𝑡) and then to obtain the solution to received differential 

matrix Riccati equation. The (24) substitution provides: 

 {𝜌𝑐𝑝𝛾 𝜕𝜏𝜕𝑡 − 𝐶𝑏 𝜕𝜔𝜕𝑡 = 𝜕𝜕𝑧 (𝜆 𝜕𝜏𝜕𝑧) + 𝑓𝑇 ,𝜕𝜔𝜕𝑡 = 𝜕𝜕𝑧 (𝜂 𝜕𝜔𝜕𝑧 + 𝜇 𝜕𝜏𝜕𝑧) + 𝑓Ω.      (25) 

 

 With the following initial-boundary conditions: 

 

{ (𝜆 𝜕𝜏𝜕𝑧 + 𝛼(𝑇 − 𝑇𝑎))𝑧=0 = 𝜙𝑇 , 𝜏𝑧=𝐻 = 𝜏𝐻 , 𝜏𝑡=0 = 0,(𝜂 𝜕𝜔𝜕𝑧 + 𝛽(𝜔 − Ω0))𝑧=0 = 𝜙Ω, 𝜔𝑧=𝐻 = 𝜔𝐻, 𝜔𝑡=0 = 0. (26) 

 

 And the correspondingly posed continuity conditions for the introduced 

functions and their derivatives: 
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{ [𝜆 𝜕𝜏𝜕𝑧]𝑧𝑘 = [𝜏]𝑧𝑘 = 0,[𝜂 𝜕𝜔𝜕𝑧 + 𝜇 𝜕𝜏𝜕𝑧]𝑧𝑘 = [𝜔]𝑧𝑘 = 0.     (27) 

 

 Here the newly introduced expressions refer to coefficients sampled in (8): 

 

{  
  
  𝑓𝑇 = 𝜆𝑎𝑇 ,𝑓Ω = 𝜂𝑎Ω + 𝜇𝑎𝑇 ,𝜙𝑇 = −𝜆𝑏𝑇1 − 𝛼𝑐𝑇1 ,𝜙Ω = −𝜂𝑏Ω1 − 𝛽𝑐Ω1,𝜏𝐻 = 𝑇𝐻 − 12 𝑎𝑇𝑁(𝐻 − 𝑧𝑁−1)2 + 12 𝑏𝑇𝑁(𝐻 − 𝑧𝑁−1) + 𝑐𝑇𝑁 ,𝜔Ω = Ω𝐻 − 12 𝑎Ω𝑁(𝐻 − 𝑧𝑁−1)2 + 12 𝑏Ω𝑁(𝐻 − 𝑧𝑁−1) + 𝑐Ω𝑁 .

  (28) 

 

 Such that 𝑓𝑇 and 𝑓Ω are the piecewise constant functions, while 𝜙𝑇, 𝜙Ω, 𝜏𝐻, 𝜔Ω 

are constants. These assumptions allow us further to transform introduced functions 𝜏(𝑧, 𝑝) and 𝜔(𝑧, 𝑝) to the frequency domain, finding their images of the Laplace 

transform: 

 { ℒ[𝜏(𝑧, 𝑡)] = ∫ 𝑒−𝑝𝑡𝜏(𝑧, 𝑡)𝑑𝑡 = �̃�(𝑧, 𝑝)+∞0 ,ℒ[𝜔(𝑧, 𝑡)] = ∫ 𝑒−𝑝𝑡𝜔(𝑧, 𝑡)𝑑𝑡 = �̃�(𝑧, 𝑝)+∞0 .   (29) 

 

 Where the complex number 𝑝 = 𝜖 + 𝑖𝜀 is the Laplace transform parameter with 𝜖 – attenuation parameter and 𝜀 – circular time frequency. Introducing the following 

matrix notations: 

 

{  
  𝑈 = ( �̃��̃�) , 𝐴 = (𝜆 0𝜇 𝜂) , 𝐷 = 𝑝 (𝜌𝑐𝑝𝛾 −𝐶𝑏0 1 ) , 𝐹 = 1𝑝 (𝑓𝑇𝑓Ω) ,𝐴0 = (𝜆 00 𝜂) , 𝐵0 = (𝛼 00 𝛽) , 𝐺0 = (𝜙𝑇 + 𝛼𝑇0̃(𝑝)𝜙Ω + 𝛽Ω0̃(𝑝)) , 𝐺𝐻 = (𝜏𝐻𝜔Ω) .  (30) 

 

 Where the functions 𝑇0̃(𝑝) and Ω0̃(𝑝) are the corresponding images of the 

Laplace transform for boundary samples on the inlet for both temperature and moisture 

measurements, i.e., 𝑇(0, 𝑡) and Ω(0, 𝑡). After sequentially applying the Laplace 

transform (29) towards received system (25) – (27), and applying the substitutions (30) 

we obtain the following system: 
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{  
  𝜕𝜕 (𝐴 𝜕𝑈𝜕𝑧) − 𝐷𝑈 = −𝐹,(𝐴0 𝜕𝑈𝜕𝑧 𝑥 + 𝐵0)𝑧=0 = 𝐺0, 𝑈𝑧=𝐻 = 𝐺𝐻,[𝐴 𝜕𝑈𝜕𝑧]𝑧𝑘 = 0, [𝑈]𝑧𝑘 = 0.     (31) 

 

 As we mentioned above, analytical solution of the direct model (16) – (18) is 

obtained by introducing the square matrix 𝑋 and the vector 𝑌 through the following 

correlation: 

 𝐴 𝜕𝜕𝑧𝑈 = 𝑋𝑈 + 𝑌.      (32) 

 

 After substituting (32) to (31), the following statements for bot 𝑋 and 𝑌 are 

obtained: 

 {𝑋′ + 𝑋𝐴−1𝑋 = 𝐷, 𝑋𝑧=0 = −𝐴𝐴0−1𝐵0, [𝑋]𝑧𝑘 = 0,𝑌′ + 𝑋𝐴−1𝑌 = −𝐹, 𝑌𝑧=0 = 𝐴𝐴0−1𝐺0, [𝑌]𝑧𝑘 = 0.    (33) 

 

That is the matrix Riccati equation, which solution is demonstrated in [77]. Now 

we will demonstrate the prescribed approach utilized for the second posed problem 

part, that is the thermoelastic bending model, heat transfer equation system for 

multilayered medium, by considering the system [84] – [87]. For that reason, we will 

reformulate the mentioned system by prescribing more detailed initial – boundary 

conditions in the one-dimensional form, two-layered domain, introduced by Ω: (0, 𝜉) ∪(𝜉, 𝐿) × (0, 𝑡𝑚𝑎𝑥): 
 𝜌(𝑥)𝑐𝑝(𝑥) 𝜕𝑇𝜕𝑡 = 𝜕𝜕𝑥 (𝑘(𝑥) 𝜕𝑇𝜕𝑥) , (𝑥, 𝑡) ∈ Ω.    (34) 

 𝑘1 𝜕𝑇𝜕𝑥 |𝑥=0 = ℎ𝑖𝑛𝑠(𝑇 − 𝑇𝑖𝑛𝑠)|𝑥=0.     (35) 

 𝑘2 𝜕𝑇𝜕𝑥 |𝑥=𝐿 = −ℎ𝑜𝑢𝑡(𝑇 − 𝑇𝑜𝑢𝑡)|𝑥=𝐿.     (36) 

 𝑇(𝑥, 0) = 𝑇0(𝑥).        (37) 

 𝑇(𝜉 + 0, 𝑡) = 𝑇(𝜉 − 0, 𝑡) = 𝑇𝜉 , 𝑘2 𝜕𝑇(𝜉+0,𝑡)𝜕𝑥 = 𝑘2 𝜕𝑇(𝜉−0,𝑡)𝜕𝑥 . (38) 

 

 Above system depicts the heat transfer through one-dimensional two-layered 

string, when both inlet and outlet are open and subjected to the heat exchange with 
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environment, where 𝑇𝑖𝑛𝑠 and 𝑇𝑜𝑢𝑡 are the inside and outside temperatures respectively 

and 𝑇𝜉  – is the measured temperature over the contact region of two mediums that we 

will assume to be constant by considering the steady state of the heat transfer process. 

Although, there are variety of approaches utilized for the non-linear cases through 

quasi-linearization of received solutions, we will linearize the posed model via 

introducing the following piece-wise function: 

 𝜌(𝑥) = {𝜌1, 𝑥 ∈ [0, 𝜉)𝜌2, 𝑥 ∈ (𝜉, 𝐿] , 𝑐𝑝(𝑥) = {𝑐𝑝1 , 𝑥 ∈ [0, 𝜉)𝑐𝑝2 , 𝑥 ∈ (𝜉, 𝐿], 
 𝑘(𝑥) = {𝑘1, 𝑥 ∈ [0, 𝜉)𝑘2, 𝑥 ∈ (𝜉, 𝐿] , 𝛼(𝑥) = {𝛼1 = 𝑘1𝜌1𝑐𝑝1 , 𝑥 ∈ [0, 𝜉)𝛼2 = 𝑘2𝜌2𝑐𝑝2 , 𝑥 ∈ (𝜉, 𝐿].  (39) 

 

 Here we introduce continuously differentiable function 𝑣(𝑥, 𝑡), which is related 

to the temperature field via unknown coefficients 𝛾 and 𝛾1 that are subjects for 

determination and here 𝑥 ∈ [0, 𝜉]: 
 {𝑇(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝛾 + 𝛾1𝑥,𝜕𝑇𝜕𝑥 = 𝜕𝑣𝜕𝑥 + 𝛾1.     (40) 

 

 Above substitution allows us to reduce the boundary conditions (36) towards: 

 𝑘1 𝜕𝑣𝜕𝑥 |𝑥=0 = ℎ𝑖𝑛𝑠𝑣|𝑥=0 + ℎ𝑖𝑛𝑠𝛾 − ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠 − 𝑘1𝛾1 .  (41) 

 

 The condition (41) is homogeneous only if the further identity is satisfied: 

 {ℎ𝑖𝑛𝑠𝛾 − 𝑘1𝛾1,𝛾 + 𝛾1𝜉 = 𝑇𝜉 .      (42) 

 

 With the major and auxiliary determinants of the posed system being the 

following expressions: 

 

{   
   ∆= |ℎ𝑖𝑛𝑠 −𝑘11 𝜉 | = 𝜉ℎ𝑖𝑛𝑠 + 𝑘1 > 0,∆1= |ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠 −𝑘1𝑇𝜉 𝜉 | = 𝜉ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠 + 𝑇𝜉𝑘1,∆2= |ℎ𝑖𝑛𝑠 ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠1 𝑇𝜉 | = ℎ𝑖𝑛𝑠𝑇𝜉 − ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠 = ℎ𝑖𝑛𝑠(𝑇𝜉 − 𝑇𝑖𝑛𝑠). (43) 
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 By knowing above determinants, we may further determine the unknown 

coefficients by: 

 

{𝛾 = ∆1∆ = 𝜉ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠+𝑇𝜉𝑘1𝜉ℎ𝑖𝑛𝑠+𝑘1 ,𝛾1 = ∆2∆ = ℎ𝑖𝑛𝑠(𝑇𝜉−𝑇𝑖𝑛𝑠)𝜉ℎ𝑖𝑛𝑠+𝑘1 .     (44) 

 

 Now, we may link initially posed problem with the introduced homogenized 

function as: 

 𝑇(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝜉ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠+𝑇𝜉𝑘1𝜉ℎ𝑖𝑛𝑠+𝑘1 + ℎ𝑖𝑛𝑠(𝑇𝜉−𝑇𝑖𝑛𝑠)𝜉ℎ𝑖𝑛𝑠+𝑘1 𝑥.   (45) 

 

 From (45), we observe equivalent rates of functions changes with respect to 

time and the differential relations with respect to spatial variables hold, i.e.: 

  { 𝜕𝑇𝜕𝑡 = 𝜕𝑣𝜕𝑡 ,𝜕𝜕𝑥 (𝑘(𝑥) 𝜕𝑇𝜕𝑥) = 𝜕𝜕𝑥 (𝑘(𝑥) (𝜕𝑣𝜕𝑥 + 𝛾1)) = 𝜕𝜕𝑥 (𝑘(𝑥) 𝜕𝑣𝜕𝑥) .  (46) 

 

 Thus, the governing equation and the system of boundary and continuity 

conditions for the introduced function 𝑣(𝑥, 𝑡) is: 

 

{ 
 𝜌(𝑥)𝑐(𝑥) 𝜕𝑣𝜕𝑥 = 𝜕𝜕𝑥 (𝑘(𝑥) 𝜕𝑣𝜕𝑥) ,𝑘1 𝜕𝑣𝜕𝑥 |𝑥=0 = ℎ𝑖𝑛𝑠𝑣|𝑥=0, 𝑣(𝜉, 𝑡) = 0,𝑇(𝜉 − 0, 𝑡) = 𝑇𝜉 = 𝑣(𝜉 − 0, 𝑡) + 𝛾 + 𝛾1𝜉.   (47) 

  

 That is an equivalent problem for the posed (34 – 38) system, defined over sub-

domain 𝑥 ∈ [0, 𝜉]. The similar procedure we shall perform for the second layer by 

applying the corresponding substitution for 𝑥 ∈ [𝜉, 𝐿] and taking into account the 

boundary conditions over outlet domain: 

 

{ 𝑇(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝛽 + 𝛽1𝑥,𝑇(𝜉, 𝑡) = 𝑣(𝜉, 𝑡) + 𝛽 + 𝛽1𝜉 = 𝑇𝜉 ,𝑘2 (𝜕𝑣𝜕𝑥 + 𝛽1) = −ℎ𝑜𝑢𝑡(𝑣(𝐿, 𝑡) + 𝛽 + 𝛽1𝐿 − 𝑇𝑜𝑢𝑡).  (48) 

 

 Further in order to receive the homogenized expressions for (48), introduced 

unknown coefficients should satisfy following system of equation: 
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 { 𝛽 + 𝛽1𝜉 = 𝑇𝜉 ,𝛽ℎ𝑜𝑢𝑡 + 𝛽1(𝑘2 + ℎ𝑜𝑢𝑡𝐿) = ℎ𝑜𝑢𝑡𝑇𝑜𝑢𝑡 .   (49) 

 

 Similarly, as to the previously determined coefficients 𝛾, 𝛾1, we are applying the 

Cramer’s method by evaluating the following determinants: 
 

{   
   ∆= | 1 𝜉ℎ𝑜𝑢𝑡 𝑘2 + ℎ𝑜𝑢𝑡𝐿| = 𝑘2 + ℎ𝑜𝑢𝑡𝐿 − ℎ𝑜𝑢𝑡𝜉 > 0,∆1= | 𝑇𝜉 𝜉ℎ𝑜𝑢𝑡𝑇𝑜𝑢𝑡 𝑘2 + ℎ𝑜𝑢𝑡𝐿| = 𝑇𝜉(𝑘2 + ℎ𝑜𝑢𝑡𝐿) − ℎ𝑜𝑢𝑡𝑇𝑜𝑢𝑡𝜉,∆2= | 1 𝑇𝜉ℎ𝑜𝑢𝑡 ℎ𝑜𝑢𝑡𝑇𝑜𝑢𝑡| = ℎ𝑜𝑢𝑡𝑇𝑜𝑢𝑡 − ℎ𝑜𝑢𝑡𝑇𝜉 .

 (50) 

 

 Therefore, the computational formulas for homogenized coefficients are: 

 

{𝛽 = ∆1∆ = 𝑇𝜉𝑘2+ℎ𝑜𝑢𝑡(𝑇𝜉𝐿−𝑇𝑜𝑢𝑡𝜉)𝑘2+ℎ𝑜𝑢𝑡(𝐿−𝜉) ,𝛽1 = ∆2∆ = ℎ𝑜𝑢𝑡(𝑇𝑜𝑢𝑡−𝑇𝜉)𝑘2+ℎ𝑜𝑢𝑡(𝐿−𝜉) .     (51) 

 

 Further we construct the system for the introduced function 𝑣(𝑥, 𝑡) towards the 

second sub-domain, when 𝑥 ∈ [𝜉, 𝐿]: 
 { 1𝛼22 𝜕𝑣𝜕𝑡 = 𝜕2𝑣𝜕𝑥2 ,   𝑥 ∈ (𝜉, 𝐿) 𝑡 ∈ (0, 𝑡𝑚𝑎𝑥),𝑣(𝜉, 0) = 0, 𝑘2 𝜕𝑣𝜕𝑥 + ℎ𝑜𝑢𝑡𝑣|𝑥=𝐿 = 0.    (52) 

 

2.2. Reduction of dimensionality of the direct multiphysical mathematical 

model in the real time domain 

 

Concerning the thermoelastic model given by (16 – 23), it is necessary to note 

that in the considered model the displacement and velocity initially take zero values, 

such that: 

 {𝑊(𝑥, 𝑦, 0) = 0,𝜕𝑊(𝑥,𝑦,0)𝜕𝑡 = 0.       (52) 

 

 We also shall indicate the rigid joint conditions, stating that considered plate 

has fixed supports at the upper boundary of the plate 𝛤: 
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𝜕𝑊(𝑥,𝑦,𝑡)𝜕𝑛 |(𝑥,𝑦)∈𝛤 = 𝑊(𝑥, 𝑦, 𝑡)|(𝑥,𝑦)∈𝛤 = 0.   (53) 

 

Furthermore, we apply the locally one-dimensional splitting scheme towards the 

equation (20) and reduce the initially posed multidimensional thermoelastic model to 

the sequence of one-dimensional equations, considering the case of linear heat transfer 

coefficients without any heat source inside the domain. For that reason, we depict the 

boundaries of investigated domain as a parallelepiped by 𝑃: [𝑥 = (𝑥, 𝑦, 𝑧) =(𝑥1, 𝑥2, 𝑥3), 0 ≤ 𝑥𝑗 < 𝑆𝑗 , (0 < 𝑆𝑗 < ∞, 𝑗 = 1,2,3)], then we may introduce the 

following terms: 

 

{   
   𝑅(𝑗)𝑉(𝑗) = 𝑘 𝜕2𝑇𝜕𝑥𝑗2 , 𝑗 = 1,3̅̅ ̅̅ , 𝑡 ∈ (0, 𝑡∗),𝜕𝑉(1)𝜕𝑡 = 𝑅(1)𝑉(1), 𝑉(1)(0, 𝑥) = 𝑇𝑖𝑛𝑖𝑡(𝑥), 𝑉(1)|𝛤 = ℎ𝜔1,𝜕𝑉(2)𝜕𝑡 = 𝑅(2)𝑉(2), 𝑉(2)(0, 𝑥) = 𝑉(1)(𝑡∗, 𝑥), 𝑉(2)|𝛤 = ℎ𝜔2,𝜕𝑉(3)𝜕𝑡 = 𝑅(3)𝑉(3), 𝑉(3)(0, 𝑥) = 𝑉(2)(𝑡∗, 𝑥), 𝑉(3)|𝛤 = ℎ𝜔3.

    (54) 

 

Solutions of (54) are easily received by the Fourier method, since both spatial 

and time variables are separable due to the well posed initial boundary conditions for 

the sequence of posed equations. The solutions take the following form: 

 

{  
  
   
 𝑉(1)(𝑥, 𝑡∗) = 2𝑆1 ∑ ∫ 𝑇𝑖𝑛𝑖𝑡(𝜉, 𝑥2, 𝑥3) sin (𝑛1𝜋𝜉𝑆1 ) 𝑑𝜉 × 𝑒−𝑡∗𝑘𝑛12𝜋2𝑆12 sin (𝑛1𝜋𝑥1𝑆1 )𝑆1

0
∞

𝑛1=1 ,
𝑉(2)(𝑥, 𝑡∗) = 2𝑆2 ∑ ∫ 𝑉(1)(𝑡∗, 𝑥1, 𝜂, 𝑥3) sin (𝑛2𝜋𝜂𝑆2 )𝑑𝜂 × 𝑒−𝑡∗𝑘𝑛22𝜋2𝑆22 sin (𝑛2𝜋𝑥2𝑆2 )𝑆2

0
∞

𝑛2=1 ,
𝑉(3)(𝑥, 𝑡∗) = 2𝑆3 ∑ ∫ 𝑉(2)(𝑡∗, 𝑥1, 𝑥2, 𝛾) sin (𝑛3𝜋𝛾𝑆3 )𝑑𝛾 × 𝑒−𝑡∗𝑘𝑛32𝜋2𝑆32 sin (𝑛3𝜋𝑥3𝑆3 )𝑆3

0
∞

𝑛3=1 .
 

(55) 

 

 Subsequently plugging expression of 𝑉(1) to 𝑉(2) and 𝑉(2) to 𝑉(3), we obtain 

following terms for the direct thermoelastic model in the following form: 

 𝑉(2)(𝑥, 𝑡∗) = 4𝑆1𝑆2 ∑ ∑ exp [−𝑡∗𝑘 (𝑛12𝜋2𝑆12 + 𝑛22𝜋2𝑆22 )]∞
𝑛1=1

∞
𝑛2=1 ∫ sin (𝑛2𝜋𝜂𝑆2 ) ×𝑆2

0  
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× [∫ 𝑇𝑖𝑛𝑖𝑡(𝜉, 𝜂, 𝑥3) sin (𝑛1𝜋𝜉𝑆1 ) 𝑑𝜉𝑆10 ] 𝑑𝜂 sin (𝑛1𝜋𝑥1𝑆1 ) sin (𝑛2𝜋𝑥2𝑆2 ).  

           (56) 

 𝑉(3)(𝑥, 𝑡∗) = 8𝑆1𝑆2𝑆3 ∑ ∑ ∑ ∫ sin (𝑛3𝜋𝛾𝑆3 )𝑆3
0

∞
𝑛1=1

∞
𝑛2=1

∞
𝑛3=1 {∫ sin (𝑛2𝜋𝜂𝑆2 ) ×𝑆2

0  

 × [∫ 𝑇𝑖𝑛𝑖𝑡(𝜉, 𝜂, 𝛾) sin (𝑛1𝜋𝜉𝑆1 ) 𝑑𝜉𝑆1
0 ] 𝑑𝜂}𝑑𝛾 × 

 × exp [−𝑡∗𝑘 (𝑛12𝜋2𝑆12 + 𝑛22𝜋2𝑆22 + 𝑛32𝜋2𝑆32 )]∏ sin (𝑛𝑖𝜋𝑥𝑖𝑆𝑖 )3𝑖=1 = 𝑇(𝑡∗, 𝑥). (57) 

 

The ideas that were illustrated in the 2.1 and 2.2 parts outline the general 

springboard that lied in the foundation of our analytical investigations of the inverse 

analysis methodology, that we have utilized for the derivation of analytical expressions 

for simultaneous determination of several parameters of multi-physical processes. 

Further chapters of the current thesis part will be concentrated on the derivation 

of the mentioned expressions and discussion of the major peculiarities for variations of 

direct model statement considered as selected case studies. 

 

2.3.  Analytical expressions for inverse analysis methodology derivation 

procedure for homogenized multiphysical process 

 

 In current section, we will depict main postulates for the derivation of analytical 

expressions for both direct and inverse analysis methodological approach utilized for 

homogenized models (47) and (52), which are split equivalences for the system (34 – 

38). 

 Initially, we will demonstrate the analytical solution derivation for the system 

(47), which we are seeking in the form of 𝑣(𝑥, 𝑡) = 𝑋0(𝑥)𝑇0(𝑡). By plugging the 

suggested substitution into (47), and introducing the root of characteristic equation of 

the proposed form as 𝜆 we will obtain: 

 1𝛼2 𝑇0′(𝑡)𝑇0(𝑡) = −𝜆2, 𝑋0′(𝑥)𝑋0(𝑥) = −𝜆2, 𝑥 ∈ (0, 𝜉), 𝑡 ∈ (0, 𝑡𝑚𝑎𝑥).  (58) 

 

 First and second equations of the received system have following solutions: 

 { 𝑇0(𝑡) = 𝑇0(0)𝑒−𝜆2𝛼2𝑡 , 𝑡 ∈ (0, 𝑡𝑚𝑎𝑥),𝑋0(𝑥) = 𝐴𝑐𝑜𝑠(𝜆𝑥) + 𝐵𝑠𝑖𝑛(𝜆𝑥), 𝑥 ∈ (0, 𝜉).   (59) 
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 Above system allows us to obtain an exact form of the function 𝑣(𝑥, 𝑡) over the 

first sub-domain as: 

 𝑣(𝑥, 𝑡) = 𝑇0(0)𝑒−𝜆𝛼2𝑡(𝐴𝑐𝑜𝑠(𝜆𝑥) + 𝐵𝑠𝑖𝑛(𝜆𝑥)).   (60) 

 

 Further we apply the boundary condition 𝑣(𝜉, 𝑡) = 0 and assume the non-

triviality principal of seek solution, i.e.: 

 {𝑇0(0)𝑒−𝜆𝛼2𝑡(𝐴𝑐𝑜𝑠(𝜆𝑥) + 𝐵𝑠𝑖𝑛(𝜆𝑥)) = 0,𝑇0(0)𝑒−𝜆𝛼2𝑡 ≠ 0.     (61) 

 

 Taking into account (61), we may rewrite (60) as the general characteristic 

equation that should be solved via: 

 𝐴𝑐𝑜𝑠[𝜆𝜉] + 𝐵𝑠𝑖𝑛[𝜆𝜉] = 0.     (62) 

 

 Furthermore, we use the first boundary condition of the model (47) and observe 

the value of unknown function 𝑣(𝑥, 𝑡) at origin, that is: 𝑣(0, 𝑡) = 𝐴𝑇0(𝑡). From this 

observation we will rewrite the Robin condition in the following consequential order: 

 {𝜕𝑣𝜕𝑥 |𝑥=0 = 𝑇0(0)𝑒−𝜆𝛼2𝑡(−𝐴𝜆𝑠𝑖𝑛[𝜆0] + 𝐵𝜆𝑐𝑜𝑠[𝜆0]) = 𝐵𝜆𝑇0(𝑡),𝑘1𝐵𝜆𝑇0(𝑡) = ℎ𝑖𝑛𝑠𝑇0(𝑡)𝐴.  (63) 

 

Due to non-triviality of solutions, we have the inequality 𝑇0(𝑡) ≠ 0, 𝑡 ∈(0, 𝑡𝑚𝑎𝑥), and it gives us the following formulas: 

 𝐴 = 𝑘1𝐵𝜆ℎ𝑖𝑛𝑠 → 𝐴𝐵 = 𝑘1𝜆ℎ𝑖𝑛𝑠.    (64) 

 

Afterwards, we transform the equation (62), and deduce the following relation 

between coefficients 𝐴 and 𝐵 in a form of the following equation: 

 𝐴𝐵 = −𝑡𝑔[𝜆𝜉].     (65) 

 

Combining the equations (64) and (65), we get the following transcendental 

equation: 

 𝑘1𝜆ℎ𝑖𝑛𝑠 = −𝑡𝑔[𝜆𝜉].     (66) 

 

We suggest that the transcendental equation above could be solved analytically 

by applying the suitable transformation, however it will not affect the general solution 

in terms of precision, therefore, we approach the solution of (66) numerically for 
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parameter 𝜆 and obtain values for 𝜆1, 𝜆2, … 𝜆𝑛. After that the solution (60) could be 

rewritten as: 

 𝑣𝑛(𝑥, 𝑡) = 𝑇0(0)𝑒−𝜆𝑛𝛼2𝑡(𝐴𝑐𝑜𝑠[𝜆𝑛𝑥] + 𝐵𝑠𝑖𝑛[𝜆𝑛𝑥]), 𝑛 = 1,2,… (67) 

 

Applying the boundary conditions (63), we may present the solution via 

unknown coefficient as: 

 𝑣𝑛(𝑥, 𝑡) = 𝐵𝑛𝑇0(0)𝑒−𝜆𝑛𝛼2𝑡 (𝑘1𝜆𝑛ℎ𝑖𝑛𝑠 𝑐𝑜𝑠[𝜆𝑛𝑥] + 𝑠𝑖𝑛[𝜆𝑛𝑥]). (68) 

 

For comfortable representation we are denoting from this step 𝐵𝑛𝑇0(0) again by 𝐵𝑛, just for convenience, and rewrite (68) as: 

 𝑣𝑛(𝑥, 𝑡) = 𝐵𝑛𝑒−𝜆𝑛𝛼2𝑡 (𝑘1𝜆𝑛ℎ𝑖𝑛𝑠 𝑐𝑜𝑠[𝜆𝑛𝑥] + 𝑠𝑖𝑛[𝜆𝑛𝑥]) , 𝑛 = 1,2,… (69) 

 

Due to linearity of initial equation, we may present the solution now in a form 

of the following series by superposition principle: 

 𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡)∞𝑛=1 = ∑ 𝐵𝑛𝑒−𝜆𝑛𝛼2𝑡𝑋𝑛(𝑥)∞𝑛=1 .   (70) 

 

Here 𝑋𝑛(𝑥) is a family of eigen functions of the governing equation for model 

(47) when spatial subdomain is 𝑥 ∈ (0, 𝜉). Taking into account above fact, we state the 

first lemma. 

Lemma 1. If n ≠ 𝑚, we have the following identity that postulates an 

orthogonality of the proposed system 𝑋𝑛(𝑥), ∀𝑛,𝑚 ∈ 𝑍: 

 ∫ 𝑋𝑛(𝑥)𝑋𝑚(𝑥)𝑑𝑥 = 0𝜉0 .     (71) 

 

Proof. The eigenfunctions are representing the solution of the governing 

equation for model (47), thus we have the following identities: 

 { 𝑋𝑛′′(𝑥) + 𝜆𝑛2𝑋𝑛(𝑥) = 0,  𝑋𝑚′′(𝑥) + 𝜆𝑚2 𝑋𝑚(𝑥) = 0.     (72) 

 

 Further, in order to sustain the proof, we perform the multiplication operation of 

the first equation in (72) by X𝑚(𝑥), and the second equation by 𝑋𝑛(𝑥) and subtract the 

second expression from the first one, it will allow us to obtain the following identity: 

 𝑋𝑛′′(𝑥)𝑋𝑚(𝑥) − 𝑋𝑚′′(𝑥)𝑋𝑛(𝑥) + (𝜆𝑛2 − 𝜆𝑚2 )𝑋𝑛(𝑥)𝑋𝑚(𝑥) = 0.  (73) 

 

From general rules of differentiation calculus, we may imply the next 

expression: 
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 𝑋𝑛′′(𝑥)𝑋𝑚(𝑥) − 𝑋𝑚′′(𝑥)𝑋𝑛(𝑥) = (𝑋𝑛′ (𝑥)𝑋𝑚(𝑥) − 𝑋𝑚′ (𝑥)𝑋𝑛(𝑥))′. (74) 

 

By performing above manipulation, we receive the transformed form of (73) as: 

 (𝑋𝑛′ (𝑥)𝑋𝑚(𝑥) − 𝑋𝑚′ (𝑥)𝑋𝑛(𝑥))′ + (𝜆𝑛2 − 𝜆𝑚2 )𝑋𝑛(𝑥)𝑋𝑚(𝑥) = 0. (75) 

 

The received expression (75) then is continuously summed along the spatial 

component 𝑥 from 0 to 𝜉 by the following integral, so we receive: 

 𝑋𝑛′ (𝜉)𝑋𝑚(𝜉) − 𝑋𝑚′ (𝜉)𝑋𝑛(𝜉) − 𝑋𝑛′ (0)𝑋𝑚(0) + 𝑋𝑚′ (0)𝑋𝑛(0) = = (𝜆𝑚2 − 𝜆𝑛2) ∫ 𝑋𝑛(𝑥)𝑋𝑚(𝑥)𝑑𝑥𝜉0 .    (76) 

 

Analyzing both families of the functions 𝑋𝑛(𝑥) and 𝑋𝑚(𝑥), we may derive the 

boundary conditions for these systems as: 

 𝑋𝑛(𝜉) = 0, 𝑋𝑚(𝜉) = 0, 𝑋𝑛′ (0) = ℎ𝑖𝑛𝑠𝑘1 𝑋𝑛(0), 𝑋𝑚′ (0) = ℎ𝑖𝑛𝑠𝑘1 𝑋𝑚(0).  (77) 

 

The derived boundary conditions (77) allow us to set the left part of integral 

expression (76) to zero, so now we observe the following identity: 

 (𝜆𝑚2 − 𝜆𝑛2) ∫ 𝑋𝑛(𝑥)𝑋𝑚(𝑥)𝑑𝑥𝜉0 = 0.    (78) 

 

Whenever we consider the cases 𝑛 ≠ 𝑚, 𝜆𝑛 ≠ 𝜆𝑛 we obtain an exact form of 

orthogonality of the functions 𝑋𝑛(𝑥) and 𝑋𝑚(𝑥) as: 

 ∫ 𝑋𝑛(𝑥)𝑋𝑚(𝑥)𝑑𝑥𝜉0 = 0.     (79) ∎ 

Additionally, we need to propose another lemma that will allow us to derive the 

computational formula of the norm of the eigenfunctions 𝑋𝑛(𝑥). 
 Lemma 2. The computational formula for the norm of the eigenfunction 𝑋𝑛(𝑥),∀𝑛 ∈ 𝑍 takes the following form: 

 ‖𝑋𝑛‖2 = ∫ [𝑋𝑛(𝑥)]2𝑑𝑥𝜉0 = 𝛼2+𝜉2 + 𝛼2𝜆𝑛 , 𝛼 = 𝑘1𝜇𝑛ℎ𝑖𝑛𝑠 .  (80) 

 

Proof. We will start the proof of proposed lemma by the direct computation of 

the suggested integral in a form: 

 ∫ (𝑘1𝜆𝑛ℎ𝑖𝑛𝑠 𝑐𝑜𝑠[𝜆𝑛𝑥] + 𝑠𝑖𝑛[𝜆𝑛𝑥])2 𝑑𝑥𝜉0 .    (81) 
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In order to perform the evaluation of posed integral, we shall apply the 

decreasing order formula which has the following form: 

 ‖𝑋𝑛‖2 = 𝛼22 ∫(1 + 𝑐𝑜𝑠[2𝜆𝑛𝑥])𝑑𝑥𝜉
0 + 12∫(1 − 𝑐𝑜𝑠[2𝜆𝑛𝑥])𝑑𝑥𝜉

0 + +2𝛼 ∫ (𝑐𝑜𝑠[𝜆𝑛𝑥]𝑠𝑖𝑛[𝜆𝑛𝑥])𝑑𝑥𝜉0 .   (82) 

 

Right after the direct computation of the received integral (82), we obtain an 

expression: 

 ‖𝑋𝑛‖2 = 𝛼22 (𝑥 + 12𝜆𝑛 𝑠𝑖𝑛[2𝜆𝑛𝑥]) |0𝜉 + 12(𝑥 − 12𝜆𝑛 sin[2𝜆𝑛𝑥]) |0𝜉 + + 2𝛼𝜆𝑛 sin2[𝜆𝑛𝑥]2 |0𝜉 .     (83) 

 

After plugging the limits in this expression, it will be transformed into: 

 ‖𝑋𝑛‖2 = 𝜉2 (𝛼2 + 1) + sin[2𝜆𝑛𝜉]4𝜆𝑛 (𝛼2 − 1) + 𝛼𝜆𝑛 sin2[𝜆𝑛𝜉].  (84) 

 

Here, we may imply the following trigonometrical identities: 

 {sin[2𝜆𝑛𝜉] = 2𝑡𝑔[𝜆𝑛𝜉]1+𝑡𝑔2[𝜆𝑛𝜉] ,sin2[𝜆𝑛𝜉] = 𝑡𝑔2[𝜆𝑛𝜉]1+𝑡𝑔2[𝜆𝑛𝜉] .      (85) 

 

From another point of view, we may get an equality 𝑡𝑔[𝜆𝑛𝜉] = −𝛼, thus our 

norm will be rewritten now as the following computational formula: 

 ‖𝑋𝑛‖2 = 𝜉2 (𝛼2 + 1) − 𝛼2𝜆𝑛 (𝛼2 − 1)1 + 𝛼2 + 𝛼𝜆𝑛 𝛼21 + 𝛼2 = 𝜉2 (𝛼2 + 1) + 2𝛼3 − 𝛼(𝛼2 − 1)2𝜆𝑛(𝛼2 + 1)= = 𝜉2 (𝛼2 + 1) + 𝛼2𝜆𝑛 = 𝜉2 [(𝑘1𝜇𝑛ℎ𝑖𝑛𝑠 )2 + 1] + 𝑘12ℎ𝑖𝑛𝑠 = 𝐴𝑛.  (86) ∎ 

Now we observe initial instance of time for the equation (70) in order to deduce 

the computable and explicit form of the function 𝑣(𝑥, 𝑡): 
 𝑣(𝑥, 0) = ∑ 𝑣𝑛(𝑥, 0)∞𝑛=1 = ∑ 𝐵𝑛𝑋𝑛(𝑥)∞𝑛=1 .    (87) 

 

At the same time, we are taking into account the identity (40) at initial time 

instance, i.e., 𝑣(𝑥, 0) = 𝑢0(𝑥) − 𝛾 − 𝛾1𝑥. Furthermore, here we are multiplying the 



37 
 

both sides of the second equation of system (59) by the function 𝑋𝑚(𝑥) and integrate 

it along the spatial variable 𝑥 from 0 to 𝜉. Afterwards we use the conclusions of the 

lemmas 1 and 2 in order to obtain the following identity:  

 ∫ (𝑢0(𝑥) − 𝛾 − 𝛾1𝑥)𝑋𝑚(𝑥)𝑑𝑥𝜉0 = 𝐴𝑚𝐵𝑚, 𝑚 = 1,2,…  (88) 

 

The above expression gives us opportunity to derive the computational 

expression for 𝐵𝑛 as the following explicit identity: 

 𝐵𝑛 = 1𝐴𝑛 ∫ (𝑢0(𝑥) − 𝛾 − 𝛾1𝑥)𝑋𝑛(𝑥)𝑑𝑥𝜉0 , 𝑛 = 1,2,…  (89) 

 

At this point we already demonstrated the solution derivation of the direct model 

(34) – (38) along the first sub-domain, when 𝑥 ∈ (0, 𝜉) for homogenized sampled 

measurements. Now we shall perform same procedure steps along the second portion 

of the domain, i.e., when 𝑥 ∈ (𝜉, 𝐿). Since we have already demonstrated the 

homogenization process of the original model, we will start here by working with the 

model (52) via introduction of the following spatial variable substitution to receive 

more convenient form of the model. We introduce 𝑥 = 𝑥 − 𝜉, and afterwards we 

substitute 𝑥 = 𝑥 + 𝜉. By observing introduced relations we may derive the differential 

identity: 

 {𝜕𝑣𝜕𝑥 = 𝜕𝑣𝜕𝑥 𝜕𝑥𝜕𝑥 = 𝜕𝑣𝜕𝑥 ,𝜕2𝑣𝜕𝑥2 = 𝜕2𝑣𝜕𝑥2 .         (90) 

 

 For convenience reasons we will use further the variable 𝑥 denoted through the 

same variable 𝑥 and our system (52) will obtain the following form: 

 { 1𝛼22 𝜕𝑣𝜕𝑡 = 𝜕2𝑣𝜕𝑥2 , 𝑥 ∈ (0, 𝑙 − 𝜉), 𝑡 ∈ (0, 𝑡𝑚𝑎𝑥),𝑣(0, 𝑡) = 0, 𝑘2 𝜕𝑣𝜕𝑥 |𝑥=𝑙−𝜉 + ℎ𝑜𝑢𝑡𝑣|𝑥=𝑙−𝜉 = 0.    (91) 

 

 The solution to posed model (91) we will seek in the analogue approach to first 

sub-domain, as 𝑣(𝑥, 𝑡) = 𝑋2(𝑥)𝑇2(𝑡). This substitution, will provide us the following 

system of differential equations: 

 1𝛼22 𝑇2′(𝑡)𝑇2(𝑡) = −𝜇2, 𝑋2′(𝑥)𝑋2(𝑥) = −𝜇2.      (92) 

 

 At the same time, we have the following general solution of the posed system, 

represented by roots of characteristic equations, 𝜇 and unknown coefficients:  
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𝑇2(𝑡) = 𝑇2(0)𝑒−𝜇2𝛼22𝑡 , 𝑋2(𝑥) = 𝐶𝑐𝑜𝑠(𝜇𝑥) + 𝐷𝑠𝑖𝑛(𝜇𝑥).  (93) 

 

 We apply the boundary conditions of the system (91) for the eigen function 𝑋2(𝑥) which take the following form: 

 𝑋2(0) = 0, 𝑘2𝑋2′(𝑙 − 𝜉) + ℎ𝑜𝑢𝑡𝑋2(𝑙 − 𝜉) = 0.   (94) 

 

 Received boundary conditions are observed along with the following identity for 

eigenfunction derivative: 

 𝑋2′(𝑥) = −𝐶𝜇 sin(𝜇𝑥) + 𝐷𝜇 cos(𝜇𝑥).    (95) 

  

 So that our initial system could be rewritten as: 

 С = 0, 𝑘2𝐷𝜇 cos(𝜇(𝑙 − 𝜉)) + ℎ𝑜𝑢𝑡𝐷𝑠𝑖𝑛(𝜇(𝑙 − 𝜉)) = 0.  (96) 

 

 Due to nontriviality principle, we consider the case when 𝐷 ≠ 0 for our solution. 

Thus, it follows that: 

 𝑘2𝜇 cos(𝜇(𝑙 − 𝜉)) + ℎ𝑜𝑢𝑡𝑠𝑖𝑛(𝜇(𝑙 − 𝜉)) = 0.   (97) 

 

Rewriting the (97) into equivalent form, we obtain the following transcendental 

equation: 

 𝑡𝑔(𝜇(𝑙 − 𝜉)) = − 𝑘2𝜇ℎ𝑜𝑢𝑡.       (98) 

 

We may solve (98) numerically, in order to obtain the set of eigenvalues 𝜇1, 𝜇2, … , 𝜇𝑛, which will construct the following set of eigenfunctions 

 𝑋1 = sin[𝜇1𝑥] , 𝑋2 = sin[𝜇2𝑥] , …     (99) 

 

Therefore, the solution of (91) will take the following form: 

 𝑣(𝑥, 𝑡) = ∑ 𝐷𝑛𝑒−𝜇𝑛2𝛼22𝑡 sin[𝜇𝑛𝑥]∞𝑛=1 , 𝑥 ∈ (0, 𝑙 − 𝜉).  (100) 

 

Furthermore, we pose our third lemma to verify if the constructed system of 

eigenfunctions {sin(𝜇𝑛𝑥)} will be orthogonal on 𝑥 ∈ (0, 𝑙 − 𝜉).  
Theorem of Rysbaiuly – Sinitsa. The eigenfunction system 𝑋𝑛 = {sin(𝜇𝑛𝑥)} 

is orthogonal on 𝑥 ∈ (0, 𝑙 − 𝜉), ∀𝑛,𝑚 ∈ 𝑍 provides convergency of the series (100). 

Proof. We approach the proof of proposed lemma through the definition of 𝑋𝑛(𝑥) and 𝑋𝑚(𝑥), which state that they should satisfy to the following system of 

equations: 
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{ 𝑋𝑛′′ + 𝜆𝑛2𝑋𝑛 = 0,𝑋𝑚′′ + 𝜆𝑚2 𝑋𝑚 = 0.       (101) 

 

 Here we perform similar manipulation with obtained system, so that we multiply 

the first equation by 𝑋𝑚(𝑥), and the second equations by 𝑋𝑛(𝑥) and then we subtract 

second equation from the first one, which gives us the following identity: 

 (𝜆𝑛2 − 𝜆𝑚2 )𝑋𝑛(𝑥)𝑋𝑚(𝑥) = 𝜆𝑚𝑋𝑛′′ − 𝜆𝑛𝑋𝑚′′ .    (102) 

 

Equation above is equivalent to the following expression by analogy to the first 

sub-domain: 

 (𝜆𝑛2 − 𝜆𝑚2 )𝑋𝑛(𝑥)𝑋𝑚(𝑥) = (𝜆𝑚𝑋𝑛′ − 𝜆𝑛𝑋𝑚′ )′.   (103) 

 

 Furthermore, we integrate the equation (103) along the spatial variable 𝑥 from 0 

to l − ξ: 
 (𝜆𝑛2 − 𝜆𝑚2 )∫𝑋𝑛(𝑥)𝑋𝑚(𝑥)𝑑𝑥𝜉

0 = (𝜆𝑚𝑋𝑛′ − 𝜆𝑛𝑋𝑚′ )|0𝑙−𝜉 = 

 = 𝑋𝑚(𝑙 − 𝜉)𝑋𝑛′ (𝑙 − 𝜉) − 𝑋𝑛(𝑙 − 𝜉)𝑋𝑚′ (𝑙 − 𝜉) − 

 −𝑋𝑚(0)𝑋𝑛′ (0) + 𝑋𝑛𝑋𝑚′ (0).   (104) 

 

 For both families of derived eigenfunctions 𝑋𝑛(𝑥) and 𝑋𝑚(𝑥) there are the 

following boundary conditions from initial system of equations (47), i.e.: 

 { 𝑋𝑛(0) = 0, 𝑋𝑚(0) = 0,𝑋𝑛′ (𝑙 − 𝜉) = − ℎ𝑜𝑢𝑡𝑘2 𝑋𝑛(𝑙 − 𝜉), 𝑋𝑚′ (𝑙 − 𝜉) = − ℎ𝑜𝑢𝑡𝑘2 𝑋𝑚(𝑙 − 𝜉).  (105) 

 

 By observing the integral relation (104) along with the boundary conditions 

(105), we will deduce the following identity: 

 (𝜆𝑛2 − 𝜆𝑚2 )∫𝑋𝑛(𝑥)𝑋𝑚(𝑥)𝑑𝑥𝜉
0 = (𝜆𝑚𝑋𝑛′ − 𝜆𝑛𝑋𝑚′ )|0𝑙−𝜉 = = −𝑋𝑚(𝑙 − 𝜉) ℎ𝑜𝑢𝑡𝑘2 𝑋𝑛(𝑙 − 𝜉) + 𝑋𝑛(𝑙 − 𝜉) ℎ𝑜𝑢𝑡𝑘2 𝑋𝑚(𝑙 − 𝜉) = 0.  (106) 

 

 Now, by considering the case when 𝜆𝑛 ≠ 𝜆𝑚 we will see that indeed the system 

is orthogonal and: 
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∫ 𝑋𝑛(𝑥)𝑋𝑚(𝑥)𝜉0 = 0.      (107) ∎ 

Now, by using the last observations, we may evaluate this integral as the 

following norm: 

 ‖𝑋𝑛‖2 = ∫ 𝑋𝑛2(𝑥)𝑑𝑥𝜉0 = ∫ sin2[𝜇𝑛𝑥] 𝑑𝑥𝑙−𝜉0 .    (108) 

 

 By analogy to the first sub-domain, we imply the order reduction formula, and 

deduce the following integral expression: 

 ‖𝑋𝑛‖2 = 12∫ (1 − cos(2𝜇𝑛𝑥))𝑑𝑥𝑙−𝜉
0 = 12(𝑥 − 22𝜇𝑛 sin(2𝜇𝑛𝑥)) |0𝑙−𝜉 = = 12 (𝑙 − 𝜉 − 1𝜇𝑛 sin(2𝜇𝑛(𝑙 − 𝜉))).     (109) 

 

 At this point, we shall take into account the following trigonometrical identity to 

express (109) in accordance with the transcendental equation (98): 

 sin(2𝜇𝑛(𝑙 − 𝜉)) = 2 sin(𝜇𝑛(𝑙 − 𝜉)) 𝑐𝑜𝑠(𝜇𝑛(𝑙 − 𝜉)) = 2𝑡𝑔(𝜇𝑛(𝑙−𝜉))1+𝑡𝑔2(𝜇𝑛(𝑙−𝜉)). (110) 

 

 By applying the (98) towards (110) we will derive the computational formula of 

the norm of ‖𝑋𝑛‖2 as: 

 ‖𝑋𝑛‖2 = 12 (𝑙 − 𝜉) + 𝑘2𝑘2(1+(𝑘2𝜇𝑛ℎ𝑜𝑢𝑡)2) = 𝐶𝑛, 𝑛 = 1,2,…  (111) 

 

 Furthermore, in order to determine the coefficients 𝐷𝑛 we shall use the identity 

(100) and take for consideration the case when 𝑡 = 0, that will give us the following 

identity: 

 𝑣(𝑥, 0) = ∑ 𝐷𝑛 sin(𝜇𝑛𝑥)∞𝑛=1 , 𝑥 ∈ (0, 𝑙 − 𝜉).   (112) 

 

 From another point of view, we recall our initial substitution 𝑣(𝑥, 0) = 𝑢0 −𝛽 − 𝛽1𝑥 and conclude that: 

 ∫ (𝑢0(𝑥) − 𝛽 − 𝛽1𝑥)𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥𝑙−𝜉0 = 𝐶𝑛𝐷𝑛.   (113) 

 

That is the computational formula explicitly derived for the coefficient 𝐷𝑛 as: 

 𝐷𝑛 = 1𝐶𝑛 ∫ (𝑢0(𝑥) − 𝛽 − 𝛽1𝑥)𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥𝑙−𝜉0 , 𝑛 = 1,2,…  (114) 
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Due to our substitution for spatial variable �̅� = 𝑥 − 𝜉, we shall perform the 

backward substitution via 𝑥 = �̅� + 𝜉,which will give us the following computational 

formula: 

 𝐷𝑛 = 1𝐶𝑛 ∫ (𝑢0(𝑥) − 𝛽 − 𝛽1𝑥)𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥𝑙𝜉 , 𝑛 = 1,2,…   (115) 

 

 Having the derived expressions, we may present further the algorithm for the 

analytical evaluation of the initial problem statement for temperature field. 

 Algorithm 1. 

Step 1. Initially we shall perform the homogenization by computing the 

coefficients by the set of formulas: 

 

{  
  
  𝛾 = 𝜉ℎ𝑖𝑛𝑠𝑢𝑖𝑛𝑠+𝑇𝜉𝑘1𝜉ℎ𝑖𝑛𝑠+𝑘1 ,𝛾1 = ℎ𝑖𝑛𝑠(𝑇𝜉−𝑢𝑖𝑛𝑠)𝜉ℎ𝑖𝑛𝑠+𝑘1 ,𝛽 = 𝑇𝜉𝑘2+ℎ𝑜𝑢𝑡(𝑇𝜉𝐿−𝑢𝑜𝑢𝑡𝜉)𝑘2+ℎ𝑜𝑢𝑡(𝐿−𝜉) ,𝛽1 = ℎ𝑜𝑢𝑡(𝑢𝑜𝑢𝑡−𝑇𝜉)𝑘2+ℎ𝑜𝑢𝑡(𝐿−𝜉) .

     (116) 

 

Step 2. We are solving numerically the following transcendental equations and 

obtain two sets of eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 and  𝜇1, 𝜇2, … , 𝜇𝑛: 
 { 𝑡𝑎𝑛[𝜆𝑛𝜉] = − 𝑘1𝜆𝑛ℎ𝑖𝑛𝑠 ,𝑡𝑎𝑛(𝜇(𝑙 − 𝜉)) = − 𝑘2𝜇ℎ𝑜𝑢𝑡 .     (117) 

  

Step 3. We shall compute the norm of the eigenfunctions of the first and 

second problem via formulas: 

 

{ 
 ‖𝑋1,𝑛‖2 = 𝐴𝑛 = 𝜉2 (𝑘1𝜆𝑛ℎ𝑖𝑛𝑠 )2 + 𝜉2+ 𝑘12ℎ𝑖𝑛𝑠 ,‖𝑋2,𝑛‖2 = 𝐶𝑛 = 12 (𝑙 − 𝜉) + 𝑘2𝑘2[1+(𝑘2𝜇𝑛ℎ𝑜𝑢𝑡)2] . , 𝑛 = 1,2,…   (118) 

 

 Step 4. After that we shall compute the following coefficients by integral 

relations: 
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{𝐵𝑛 = 1𝐴𝑛 ∫ (𝑢0(𝑥) − 𝛾 − 𝛾1𝑥) (𝑘1𝜆𝑛ℎ𝑖𝑛𝑠 cos(𝜆𝑛𝑥) + sin(𝜆𝑛𝑥)) 𝑑𝑥,𝜉0𝐷𝑛 = 1𝐶𝑛 ∫ (𝑢0(𝑥) − 𝛽 − 𝛽1𝑥)𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥.𝑙𝜉 , 𝑛 = 1,2,… 

            (119) 

 

 Step 5. Afterwards, we are ready to evaluate the solutions for initial-boundary 

value problem (34) – (38) via the following computational formulas: 

 𝑢(𝑥, 𝑡) = 

= {  
  ∑𝐵𝑛𝑒−𝜆𝑛𝛼2𝑡 (𝑘1𝜆𝑛ℎ𝑖𝑛𝑠 cos(𝜆𝑛𝑥) + sin(𝜆𝑛𝑥))∞
𝑛=1 + 𝛾 + 𝛾1𝑥, 𝑥 ∈ (0, 𝜉), 𝑡 ∈ (0, 𝑇𝑚),

∑𝐷𝑛𝑒−𝜇𝑛2𝛼22𝑡 sin(𝜇𝑛𝑥)∞
𝑛=1 + 𝛽 + 𝛽1𝑥, 𝑥 ∈ (𝜉, 𝑙)𝑡 ∈ (0, 𝑇𝑚).  

(120) 

 

 After derivation of the analytical solution for the direct problem is finished, we 

may start the procedure of derivation for the inverse problem analytical solution. Since 

the key problem formulation is to determine the unknown parameters via measured 

response of the system, we will formulate the system of nonlinear equations as follows: 

 

{  
   
 𝑇1(𝑡𝑘) − ∑ 𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘𝑋𝑛(0)∞𝑛=1 + 𝛾 = 𝑓(𝜌1),𝑇1(𝑡𝑘+1) − ∑ 𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘+1𝑋𝑛(0)∞𝑛=1 + 𝛾 = 𝑓 ( 𝑐𝑝1) ,𝑇1(𝑡𝑘+2) − ∑ 𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘+2𝑋𝑛(0)∞𝑛=1 + 𝛾 = 𝑓(ℎ𝑖𝑛𝑠),𝑇1(𝑡𝑘+3) − ∑ 𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘+3𝑋𝑛(0)∞𝑛=1 + 𝛾 = 𝑓( 𝑘1).

→ 𝑚𝑖𝑛   (121) 

 

Where 𝑡𝑘 ∈ (𝑡𝑖 , 𝑡𝑖+1) is the time partition for our received measurements, which 

at the same time could be observed in the frequency domain. By prescribing the 

corresponding accuracy and measurement device position, - that is also could be 

subject for determination via the optimal experiment design approach. The system 

(121) shall perceive the local convex properties, otherwise, we may apply the least 

square method. Right after evaluation of the first set of parameters, 𝜋1 we clarify them 

additionally by another optimization problem from the system with second device 

measurements: 
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{  
   
 𝑇2(𝑡𝑘) − ∑ 𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘𝑋𝑛(𝑥2)∞𝑛=1 + 𝛾 + 𝛾1𝑥2 = 𝑓(𝜌1),𝑇2(𝑡𝑘+1) − ∑ 𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘+1𝑋𝑛(𝑥2)∞𝑛=1 + 𝛾 + 𝛾1𝑥2 = 𝑓 ( 𝑐𝑝1) ,𝑇2(𝑡𝑘+2) − ∑ 𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘+2𝑋𝑛(𝑥2)∞𝑛=1 + 𝛾 + 𝛾1𝑥2 = 𝑓(ℎ𝑖𝑛𝑠),𝑇2(𝑡𝑘+3) − ∑ 𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘+3𝑋𝑛(𝑥2)∞𝑛=1 + 𝛾 + 𝛾1𝑥2 = 𝑓( 𝑘1).

→ 𝑚𝑖𝑛  

(122) 

 

 Here, 𝑥2 – is the position of second device, that will be illustrated in validation 

part. Going further towards the third measurement device, we construct another system 

to perform the same procedure with 𝑥3 being the position of the third device: 

 

{  
   
 𝑇3(𝑡𝑘) − ∑ 𝐷𝑛𝑒−𝜇2 𝑘2𝜌2𝑐𝑝2𝑡𝑘 sin(𝜇2𝑥3)∞𝑛=1 + 𝛽 + 𝛽1𝑥3 = 𝑓(𝜌2),𝑇3(𝑡𝑘+1) − ∑ 𝐷𝑛𝑒−𝜇2 𝑘2𝜌2𝑐𝑝2𝑡𝑘+1 sin(𝜇2𝑥3)∞𝑛=1 + 𝛽 + 𝛽1𝑥3 = 𝑓 ( 𝑐𝑝2) ,𝑇3(𝑡𝑘+2) − ∑ 𝐷𝑛𝑒−𝜇2 𝑘2𝜌2𝑐𝑝2𝑡𝑘+2 sin(𝜇2𝑥3)∞𝑛=1 + 𝛽 + 𝛽1𝑥3 = 𝑓(ℎ𝑜𝑢𝑡),𝑇3(𝑡𝑘+3) − ∑ 𝐷𝑛𝑒−𝜇2 𝑘2𝜌2𝑐𝑝2𝑡𝑘+3 sin(𝜇2𝑥3)∞𝑛=1 + 𝛽 + 𝛽1𝑥3 = 𝑓( 𝑘2).

→ 𝑚𝑖𝑛 

            (123) 

 

 Which we also clarify by the measurements received from the fourth, last, device 

by: 

 

{  
   
 𝑇4(𝑡𝑘) − ∑ 𝐷𝑛𝑒−𝜇2 𝑘2𝜌2𝑐𝑝2𝑡𝑘 sin(𝜇2𝑥4)∞𝑛=1 + 𝛽 + 𝛽1𝑥4 = 𝑓(𝜌2),𝑇4(𝑡𝑘+1) − ∑ 𝐷𝑛𝑒−𝜇2 𝑘2𝜌2𝑐𝑝2𝑡𝑘+1 sin(𝜇2𝑥4)∞𝑛=1 + 𝛽 + 𝛽1𝑥4 = 𝑓 ( 𝑐𝑝2) ,𝑇4(𝑡𝑘+2) − ∑ 𝐷𝑛𝑒−𝜇2 𝑘2𝜌2𝑐𝑝2𝑡𝑘+2 sin(𝜇2𝑥4)∞𝑛=1 + 𝛽 + 𝛽1𝑥4 = 𝑓(ℎ𝑜𝑢𝑡),𝑇4(𝑡𝑘+3) − ∑ 𝐷𝑛𝑒−𝜇2 𝑘2𝜌2𝑐𝑝2𝑡𝑘+3 sin(𝜇2𝑥4)∞𝑛=1 + 𝛽 + 𝛽1𝑥4 = 𝑓( 𝑘2).

→ 𝑚𝑖𝑛 

            (124) 

 

  

We perform the evaluation of all system parameters through the algorithm 1, and 

observe the pattern variations through each iteration, however, in order to determine 

the geometrical characteristic of the proposed system, we do the implementation of the 

contact condition, by obtaining additional convex function: 

 ∑𝐷𝑛𝑒−𝜆𝑛 𝑘2𝜌2𝑐𝑝2𝑡𝑘+5 sin[𝜇2𝜉]∞
𝑛=1 + 𝛽 + 𝛽1𝜉 −∑𝐵𝑛𝑒−𝜆𝑛 𝑘1𝜌1𝑐𝑝1𝑡𝑘+5𝑋𝑛(𝜉)∞

𝑛=1 + 𝛾 + 
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+𝛾1𝜉 = 𝑓(𝜉) → 𝑚𝑖𝑛    (125) 

 

 Sequentially measuring the data over suitably selected positions, we are keen to 

avoid high level of fluctuations by computing the norms of the eigenfunctions at each 

iteration that we will present in the validation part of the thesis. 

 

2.4. Analytical expressions for inverse analysis methodology derivation 

procedure for elasticity parameters in thermoelastic stress model. 

 

The received model (16) – (23) along with the expressions (52) – (53) are now 

suitable for determination of the physical parameters via the functional construction 

methodological approach due, since we have already demonstrated the reduction of 

dimensionality for the proposed thermoelastic process and its analytical solutions by 

(54) – (57). For that reason, we present (20) – (23) by analogy to (34) – (38) and 

construct the thermoelastic model together with mentioned above system of equations 

and expressions and set the additional information, measuring the temperatures at the 

inlet and outlet of our domain 𝑇|𝑥=0 = 𝑇𝑔1(𝑡) and 𝑇|𝑥=𝐿 = 𝑇𝑔2(𝑡). Afterwards we 

take initial approximation of observed coefficient at initialize zero iteration, i.e., 𝑘0. It 

will allow to construct the auxiliary problem by observing fluctuation at neighbor 

iterations, i.e., ∆𝑇 = 𝑇𝑛+1 − 𝑇𝑛, which will take the form: 
 𝜌𝑐 𝜕∆𝑇𝜕𝑡 = 𝜕𝜕𝑥 (∆𝛿).      (126) 

 ∆𝛿|𝑥=0 = ℎ𝑜𝑢𝑡(∆𝑇)|𝑥=0.     (127) 

 ∆𝛿|𝑥=𝐿 = −ℎ𝑖𝑛𝑠(∆𝑇)|𝑥=𝐿.    (128) 

 ∆𝑇|𝑡=0 = 0.       (129) 

 

 Here, we have introduced the heat flux 𝛿 = 𝑘 𝜕𝑇𝜕𝑥. Afterwards we proceed to the 

key part of suggested methodology, construction of the Pre-Hilbert space via the 

following inner product: 

 < 𝑓, 𝑔 > = ∫ ∫ (𝑓 × 𝑔)𝑡∗0 𝑑𝑡𝐿0 𝑑𝑥.   (130) 

 

 By using the inner product above, we apply it towards (126) – (129) via scalarly 

multiplying the governing equation of the auxiliary problem (126) by arbitrary 

continuously differentiable function 𝜓(𝑥, 𝑡) and integrate the received product along 

the whole region 𝑄 = [0, 𝑡∗] × [0, 𝐿]: 
  < 𝜌𝑐 𝜕∆𝑇𝜕𝑡 , 𝜓 > = < 𝜕∆𝛿𝜕𝑥 , 𝜓 >.    (131) 
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 We observe an expression (131) as the definite iterated integral relation, that 

could be opened by applying the integration by parts formulas: 

 < 𝜌𝑐 𝜕∆𝑇𝜕𝑡 , 𝜓 > = < ∆𝑇, 𝜌𝑐𝜓 > |0𝑡∗− < ∆𝑇, 𝜌𝑐 𝜕𝜓𝜕𝑡 >. (132) 

  

 Here we are posing the hypothesis that will be used later in derivation of the 

conjugate problem, that is: 𝜓|𝑡=𝑇𝑚 = 𝜓(𝑥, 𝑇𝑚) = 0. Now, by taking into account the 

condition (129), our integral relation (132) will take the form: 

 < 𝜌𝑐 𝜕∆𝑇𝜕𝑡 , 𝜓 > = − < ∆𝑇, 𝜌𝑐 𝜕𝜓𝜕𝑡 >.    (133) 

 

 Analogically to above procedure, we evaluate the right side of the expression 

(131): 

 < 𝜕∆𝛿𝜕𝑥 , 𝜓 > = < ∆𝛿,𝜓 > |0𝐿− < ∆𝛿, 𝜕𝜓𝜕𝑥 >.   (134) 

 

 Afterwards, we use the auxiliary problem conditions (127) – (128) and obtain: 

 < ∆𝛿, 𝜓 > |0𝐿 =< ∆𝛿,𝜓 > |𝑥=𝐿−< ∆𝛿, 𝜓 > |𝑥=0 = 

 = −< ℎ𝑖𝑛𝑠(∆𝑇),𝜓 > |𝑥=𝐿− < ℎ𝑜𝑢𝑡(∆𝑇), 𝜓 > |𝑥=0. (135) 

 

 At this point, we shall imply the following algebraic identity in order to 

investigate the heat flux at neighbor iterations: 

 ∆𝛿 = 𝜆𝑛+1 𝜕𝑇𝑛+1𝜕𝑥 − 𝜆𝑛 𝜕𝑇𝑛𝜕𝑥 + 𝜆𝑛 𝜕𝑇𝑛+1𝜕𝑥 − 𝜆𝑛 𝜕𝑇𝑛+1𝜕𝑥 = ∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 + 𝜆𝑛 𝜕∆𝑇𝜕𝑥 .  (136) 

 

 Applying above identity towards the integral relation (134), we may alter it and 

obtain the following expression: 

 − < ∆𝛿, 𝜕𝜓𝜕𝑡 > = −< ∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 + 𝜆𝑛 𝜕∆𝑇𝜕𝑥 , 𝜕𝜓𝜕𝑥 > = − < ∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥 > −  

 − < 𝜆𝑛 𝜕∆𝑇𝜕𝑥 , 𝜕𝜓𝜕𝑥 > = − < ∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥 >  − 

 − < ∆𝑇, 𝜆𝑛 𝜕𝜓𝜕𝑥 > |𝑥=𝐿 + < ∆𝑇, 𝜆𝑛 𝜕𝜓𝜕𝑥 > |𝑥=0 ++ < ∆𝑇, 𝜕𝜕𝑥 (𝜆𝑛 𝜕𝜓𝜕𝑥) >.  

            (137) 

 From this point we combine together above relations and plug them back in 

(133): 
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− < ∆𝑇, 𝜌𝑐 𝜕𝜓𝜕𝑡 > = < ∆𝑇, 𝜕𝜕𝑥 (𝜆𝑛 𝜕𝜓𝜕𝑥) >  − < ∆𝑇, 𝜆𝑛 𝜕𝜓𝜕𝑥 > |𝑥=𝐿 + 

 + < ∆𝑇, 𝜆𝑛 𝜕𝜓𝜕𝑥 > |𝑥=0− < ∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥 > − 

 −< ℎ𝑖𝑛𝑠(∆𝑇), 𝜓 > |𝑥=𝐿− < ℎ𝑜𝑢𝑡(∆𝑇),𝜓 > |𝑥=0.  (138) 

 

 Simultaneously, the derived expression (132) has another equivalent form: 

 − ∫∫ (∆𝑇, 𝜌𝑐 𝜕𝜓𝜕𝑡 )𝑇𝑚
0 𝑑𝑡𝐿

0 𝑑𝑥 =  ∫∫ (∆𝑇, 𝜕𝜕𝑥 (𝜆𝑛 𝜕𝜓𝜕𝑥))𝑇𝑚
0 𝑑𝑡𝐿

0 𝑑𝑥 − 

 −∫ (∆𝑇, 𝜆𝑛 𝜕𝜓𝜕𝑥) |𝑥=𝐿𝑇𝑚
0 𝑑𝑡 +  ∫ (∆𝑇, 𝜆𝑛 𝜕𝜓𝜕𝑥) |𝑥=0𝑇𝑚

0 𝑑𝑡 − ∫∫ (∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥)𝑇𝑚
0 𝑑𝑡𝐿

0 𝑑𝑥− 

 −∫ (ℎ𝑖𝑛𝑠(∆𝑇),𝜓)|𝑥=𝐿𝑇𝑚0 𝑑𝑡 − ∫ (ℎ𝑜𝑢𝑡(∆𝑇), 𝜓)|𝑥=0𝑇𝑚0 𝑑𝑡. 
          (139) 

 

 Further step is to collect all similar terms of the received integral relation and to 

set another working hypothesis 𝜓|𝑡=𝑇𝑚 = 𝜓(𝑥, 𝑇𝑚) = 0, after that it will follow that:

  

 − ∫∫ (∆𝑇, 𝜌𝑐 𝜕𝜓𝜕𝑡 + 𝜕𝜕𝑥 (𝜆𝑛 𝜕𝜓𝜕𝑥))𝑇𝑚
0 𝑑𝑡𝐿

0 𝑑𝑥 + ∫∫ (∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥)𝑇𝑚
0 𝑑𝑡𝐿

0 𝑑𝑥 + 

 + ∫ (∆𝑇, 𝜆𝑛 𝜕𝜓𝜕𝑥 + ℎ𝑖𝑛𝑠𝜓) |𝑥=𝐿𝑇𝑚
0 𝑑𝑡 + 

 +∫ (∆𝑇, ℎ𝑜𝑢𝑡𝜓 − 𝜆𝑛 𝜕𝜓𝜕𝑥) |𝑥=0𝑇𝑚0 𝑑𝑡 =  0.  (140) 

 

 From above equation we see that the left part will be equal to zero only under 

the following circumstances: 

 𝜌𝑐 𝜕𝜓𝜕𝑡 + 𝜕𝜕𝑥 (𝜆𝑛 𝜕𝜓𝜕𝑥) = 0 .     (141) 
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(ℎ𝑜𝑢𝑡𝜓 − 𝜆𝑛 𝜕𝜓𝜕𝑥) |𝑥=0 = 2(𝑇 − 𝑇𝑔1(𝑡))|𝑥=0.  (142) 

 (ℎ𝑖𝑛𝑠𝜓 + 𝜆𝑛 𝜕𝜓𝜕𝑥) |𝑥=𝐿 = 2(𝑇 − 𝑇𝑔2(𝑡))|𝑥=𝐿.  (143) 

 𝜓|𝑡=𝑇𝑚 = 𝜓(𝑥, 𝑇𝑚) = 0.      (144) 

 

 The built conjugate model above may be solved numerically or analytically 

further by analogy to other models discussed in this thesis. We will present major notes 

on analytical investigations of the discussed model in the Appendix A. Even by 

satisfying above system (141) – (142), the left part may not be nulled if one more 

condition would not be achieved, that is the following hypothesis: 

 ∫∫ (−∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥)𝑇𝑚
0 𝑑𝑡𝐿

0 𝑑𝑥 =< −∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥 > = 

 = 2(< ∆𝑇, 𝑇 − 𝑇𝑔2 > |𝑥=𝐿−< ∆𝑇, 𝑇 − 𝑇𝑔1 > |𝑥=0).  (145) 

 

 By observing the above assumption, we may set up the following functional 

mappings, that are depicting the minimization of the error between computed and 

measured values: 

 {𝐽1(𝜆) = ∫ (𝑇(0, 𝑡) − 𝑇𝑔1)2𝑑𝑡𝑇𝑚0 ,𝐽2(𝜆) = ∫ (𝑇(𝐿, 𝑡) − 𝑇𝑔2)2𝑑𝑡𝑇𝑚0 .   (146) 

  

The set mappings describe the potential energy surface for considered dynamical 

system in terms of the thermal conductivity coefficient through the temperature field, 

however, by analogical procedure, we may derive such mapping in other coefficients 

terms. By finding the absolute minimum of the functional, we will evaluate the state of 

equilibrium of considered dynamical system, which is reflecting the proper allocation 

of determined coefficients. The minimization could be performed by posing the 

monotonous decreasing condition over the functionals, such that they will satisfy to the 

following inequalities: 𝐽1,2(𝜆𝑛+1) − 𝐽1,2(𝜆𝑛) ≤ 0 → 𝐽1,2(𝜆𝑛+1) ≤ 𝐽1,2(𝜆𝑛). For that 

reason, in order to achieve such conditions, we consider the increment of the 

functionals over neighbor iterations for the first functional: 

 ∆𝐽1 = 𝐽1(𝜆𝑛+1) − 𝐽1(𝜆𝑛) = 𝐽1𝑛+1 − 𝐽1𝑛 = 

 = ∫ (𝑇𝑛+1(0, 𝑡) − 𝑇𝑔1)2𝑑𝑡𝑇𝑚
0 −∫ (𝑇𝑛(0, 𝑡) − 𝑇𝑔1)2𝑑𝑡𝑇𝑚

0 = 
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 = |𝑎2 − 𝑏2 = 2𝑏(𝑎 − 𝑏) + (𝑎 − 𝑏)2| = 

 = 2∫ (𝑇𝑛(0, 𝑡) − 𝑇𝑔1)∆𝑇(0, 𝑡)𝑑𝑡𝑇𝑚0 + ∫ [∆𝑇(0, 𝑡)]2𝑑𝑡𝑇𝑚0 .  (147) 

 

 Analogically, we consider the same difference for the second functional, 

obtaining: 

 ∆𝐽2 = 𝐽2(𝜆𝑛+1) − 𝐽2(𝜆𝑛) = 𝐽2𝑛+1 − 𝐽2𝑛 = 

 = ∫ (𝑇𝑛+1(𝐿, 𝑡) − 𝑇𝑔2)2𝑑𝑡𝑇𝑚
0 −∫ (𝑇𝑛(𝐿, 𝑡) − 𝑇𝑔2)2𝑑𝑡𝑇𝑚

0 = 

 = |𝑎2 − 𝑏2 = 2𝑏(𝑎 − 𝑏) + (𝑎 − 𝑏)2| = 

 = 2∫ (𝑇𝑛(𝐿, 𝑡) − 𝑇𝑔2)∆𝑇(𝐿, 𝑡)𝑑𝑡𝑇𝑚0 + ∫ [∆𝑇(𝐿, 𝑡)]2𝑑𝑡𝑇𝑚0 . (148) 

 

 Comparing together expressions (147) and (148) along with the working 

hypothesis (39) we may notice that:  

  ∫∫ (−∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥)𝑇𝑚
0 𝑑𝑡𝐿

0 𝑑𝑥 =< −∆𝜆 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥 > = 

 = 𝐽2(𝜆𝑛+1) − 𝐽2(𝜆𝑛) − 𝐽1(𝜆𝑛+1) + 𝐽1(𝜆𝑛) − 

 −< ∆𝑇, ∆𝑇 > |𝑥=𝐿+< ∆𝑇, ∆𝑇 > |𝑥=0.  (149) 

 

 In the equation (149) we open the term: ∆𝑇 = 𝑇𝑛+1 − 𝑇𝑛 → 𝑇𝑛+1 = ∆𝑇 + 𝑇𝑛 

in this way, the expression will be altered to: 

 ∆𝜆 < 𝜕𝑇𝑛+1𝜕𝑥 , 𝜕𝜓𝜕𝑥 > = ∆𝜆 < −𝜕𝑇𝑛𝜕𝑥 , 𝜕𝜓𝜕𝑥 > −∆𝜆 < 𝜕∆𝑇𝜕𝑥 , 𝜕𝜓𝜕𝑥 > + 

 +< ∆𝑇, ∆𝑇 > |𝑥=𝐿−< ∆𝑇, ∆𝑇 > |𝑥=0 = 𝐽2(𝜆𝑛+1) − 

 −𝐽2(𝜆𝑛) − 𝐽1(𝜆𝑛+1) + 𝐽1(𝜆𝑛).    (150) 

 

 By observing the above equation, we will note that to reach the minimum value 

of the posed functional, the left part of the above expression should be less than zero, 

for that reason we pose the inequality: 
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−∆𝜆 < 𝜕𝑇𝑛𝜕𝑥 , 𝜕𝜓𝜕𝑥 > −∆𝜆 < 𝜕∆𝑇𝜕𝑥 , 𝜕𝜓𝜕𝑥 > + 

 +< ∆𝑇, ∆𝑇 > |𝑥=𝐿−< ∆𝑇, ∆𝑇 > |𝑥=0 ≤ 0.   (151) 

   

 From above inequality, we may separately investigate the small quantities of 

higher orders: 

 

{  
  ∆𝜆 < 𝜕𝑇𝑛𝜕𝑥 , 𝜕𝜓𝜕𝑥 >= 𝑘1,∆𝜆 < 𝜕∆𝑇𝜕𝑥 , 𝜕𝜓𝜕𝑥 >= 𝑘2,< ∆𝑇, ∆𝑇 > |𝑥=𝐿 = 𝑘3,< ∆𝑇, ∆𝑇 > |𝑥=0 = 𝑘4.     (152) 

 

 Here, the value of 𝑘1 is a small quantity of the first order, and all other quantities 𝑘2,3,4 are the small quantities of the second order, thus the values of 𝑘1will prevail over 

the sign convention, so that is the value ∆𝜆 = 𝜆(𝑥)𝑛+1 − 𝜆(𝑥)𝑛 should be positive. 

Thus, we are deriving the following estimator: 

 𝜆(𝑥)𝑛+1 = 𝜆(𝑥)𝑛 + 𝛾(𝑥)𝑛 ∫ ∫ 𝜕𝑇𝑛𝜕𝑥𝑇𝑚0 𝜕𝜓𝜕𝑥 𝑑𝑡𝐿0 𝑑𝑥.  (153) 

 

 Here by the expression 𝛾(𝑥)𝑛 we have additionally introduced small quantity, 

which is at the same time represents the governing parameter in analogy to the gradient 

descent method, that should be appropriately sampled in order to satisfy the criteria of 

termination in iterative process, - it will allow us to determine the absolute value of the 

functional and satisfy the inequality (151). At the same time, in a case of non-

homogeneous structure of the considered medium, we may apply the additivity 

property of integral, and decompose our expression (153), such that it will be applied 

towards the multilayered structure, i.e., 𝑄 = ⋃ 𝑄𝑖𝑁𝑖=1 : 

 𝜆(𝑥)𝑛+1 = 𝜆(𝑥)𝑛 ++𝛾(𝑥)𝑛∫∫ 𝜕𝑇𝑛𝜕𝑥𝑇𝑚
0

𝜕𝜓𝜕𝑥 𝑑𝑡𝐿
0 𝑑𝑥𝜆(𝑥)𝑛 = 

 = 𝜆(𝑥)𝑛 + 𝛾(𝑥)𝑛∫ ∫ 𝜕𝑇𝑛𝜕𝑥𝑇𝑚
0

𝜕𝜓𝜕𝑥 𝑑𝑡𝑙1
0 𝑑𝑥 + 

 +𝛾(𝑥)𝑛 ∫ ∫ 𝜕𝑇𝑛𝜕𝑥𝑇𝑚0 𝜕𝜓𝜕𝑥 𝑑𝑡𝑙2𝑙1 𝑑𝑥 +⋯+ 𝛾(𝑥)𝑛 ∫ ∫ 𝜕𝑇𝑛𝜕𝑥𝑇𝑚0 𝜕𝜓𝜕𝑥 𝑑𝑡𝐿𝑙𝑖−1 𝑑𝑥. (154) 

 

 By setting up the appropriate initial approximation, we may use the above 

recurrent relations and determine the conductivity coefficient iteratively. In a case of 



50 
 

piece-wise constant function that represents the coefficient, we may separate above 

relation due to homogeneity of constructed functionаl by obtaining the below system 

of expressions: 

 

{  
  𝜆(𝑥)𝑛+1 = 𝜆(𝑥)𝑛 + 𝛾(𝑥)𝑛 ∫ ∫ 𝜕𝑇𝑛𝜕𝑥𝑇𝑚0 𝜕𝜓𝜕𝑥 𝑑𝑡𝑙10 𝑑𝑥, 𝑥 ∈ [0, 𝑙1],𝜆(𝑥)𝑛+1 = 𝜆(𝑥)𝑛 + 𝛾(𝑥)𝑛 ∫ ∫ 𝜕𝑇𝑛𝜕𝑥𝑇𝑚0 𝜕𝜓𝜕𝑥 𝑑𝑡𝑙2𝑙1 𝑑𝑥, 𝑥 ∈ [𝑙1, 𝑙2],⋮𝜆(𝑥)𝑛+1 = 𝜆(𝑥)𝑛 + 𝛾(𝑥)𝑛 ∫ ∫ 𝜕𝑇𝑛𝜕𝑥𝑇𝑚0 𝜕𝜓𝜕𝑥 𝑑𝑡𝑙𝑁𝑙𝑁−1 𝑑𝑥, 𝑥 ∈ [𝑙𝑁−1, 𝑙𝑁]. (155) 

 

 In a case of the well-posedness of the proposed problem statement, we would 

apply the fundamental theorem of variational calculus and the condition of the 

existence of unique solution by investigation of the functional integrands in a form of 

the below system of differentiable functions with respect to the functional arguments: 

  

 

{  
  𝑆1 = 2[𝑇(0, 𝑡) − 𝑇𝑔1(𝑡)]2,𝑆2 = 2[𝑇(𝐿, 𝑡) − 𝑇𝑔2(𝑡)]2,𝜕𝑆1𝜕𝑇 − 𝑑𝑑𝑡 𝜕𝑆1𝜕𝑇′ = 0 → 𝜕𝑆1𝜕𝑇 = 0 → 4[𝑇(0, 𝑡) − 𝑇𝑔1(𝑡)] = 0,𝜕𝑆2𝜕𝑇 − 𝑑𝑑𝑡 𝜕𝑆2𝜕𝑇′ = 0 → 𝜕𝑆2𝜕𝑇 = 0 → 4[𝑇(𝐿, 𝑡) − 𝑇𝑔2(𝑡)] = 0.  (156) 

 

 However, by observing the above Lagrange-Euler equation we will see that the 

computed and measured temperature fields over the boundary points of domain should 

be equal, which is never true due to ill-posedness of the inverse problem, for instance 

because of the error introduced by the measurement device and so on. Further we are 

presenting the algorithm – 2, which will allow us to determine all necessary terms of 

the thermal elasticity model. 

 Algorithm 2. 

 Step 0. Initially, we have to introduce the material parameters in terms of thermal 

and elasticity properties, assuming the initial approximations as the assumptions, - here 

we shall pose the knowledge of the Poisson and linear expansion coefficients values.  

Step 1. Empirically, we introduce the small fluctuations by knowing the 

principal moments of the considered solid and measuring the appeared differences of 

the temperature field over the boundary points of investigated domain. 

 Step 2. Applying the recurrent relations, we may compute the thermal 

conductivity parameters along with the temperature field values using analytical 

expressions. 

 Step 3. Using the expression (18) we evaluate the Lame’s coefficient and further 

by the expression (19) we determine the Young’s modulus along with the cylindrical 
stiffness from the relation (17). 
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 Step 4. Applying the Sophie-Germain equation we are adjusting the obtained 

results of coefficients via juxtaposing the bending moment for moderated fluctuation 

with measured and computed principal displacement values. 

 Step 5. Furthermore, we may proceed analyzing the thermal and elasticity 

parameters and validate the state of deterioration of structural material strength by 

comparing the evaluated data with the normative values. 
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3 TECHNICAL EXPERIMENTAL DESIGNS FOR VALIDATION OF 

DERIVED ANALYTICAL EXPRESSIONS FOR THE PROPOSED INVERSE 

ANALYSIS METHODOLOGY 

 

 Current chapter of the thesis intends to describe the major posed experimental 

designs to validate the received analytical expressions for the proposed inverse analysis 

methodology. We will separately present models and computational algorithms for 

each posed case study, like the heat and moisture transfer computer model, or the 

thermoelastic bending design, outlining the received results analysis. 

 

3.1. Experimental design for multilayered heat transfer in medium terrain 

for both homogenized and non-homogeneous measurements 

 

 In order to validate the algorithm – 1, we are proposing the following 

experimental design scheme for еру (34) – (38) model domain presented in the one-

dimensional form, two-layered medium terrain, introduced by Ω: (0, 𝜉) ∪ (𝜉, 𝐿) ×(0, 𝑡𝑚𝑎𝑥) by the figure below: 

 

  

Figure 1. experimental design scheme 

 

 On the figure 1 we denote the measurement devices that sample data over 

investigated domain for two sets of parameters, where the geometrical characteristic 𝜉 

will be evaluated simultaneously by both sub-domain problems via the contact 

conditions: 

 {𝜋1 = {𝜌1, 𝑐𝑝1, ℎ𝑖𝑛𝑠 , 𝑘1, 𝜉} ,𝜋2 = {𝜌2, 𝑐𝑝2, ℎ𝑜𝑢𝑡, 𝑘2, 𝜉} .    (157) 

 

 In order to perform the homogenization sufficiently, we shall specify the time partition for 

the ambient temperature being constant, where we may omit the fluctuations by observing that they 

are negligible. This partition scheme is illustrated below: 
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Figure 2. Time domain decomposition scheme 

 

 Afterwards we may perform the algorithm 1 on each sub-division 𝑡𝑘 ∈ (𝑡𝑖 , 𝑡𝑖+1) 
in order to iteratively compute parameters from the sets 𝜋1 and 𝜋2 one by one. To solve 

the system of nonlinear equations that we receive upon determination of unknown 

parameters, until we reach the following stop criteria: 

 |𝑢(𝑥𝑚, 𝑡) − 𝑇𝑔𝑚(𝑡)| ≤ 𝜀.     (158) 

 

Here 𝜀 is the predefined accuracy, and 𝑥𝑚 – is the measurement device 

coordinate, meanwhile the term 𝑇𝑔𝑚(𝑡) – is the measured temperature. Right after 

perform of the algorithm – 1 by minimizing the expressions (120) – (124), we may 

verify the following eigenfunctions’ roots behavior to clarify their orthonormal 
tendency along with the Cauchy sequence behavior for the Fourier coefficients Bn(μn) 
for different roots of transcendental equation solutions: 
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Figure 3. Eigenfunctions values distribution for posed direct problem (above), 

Fourier coefficient Bn(μn) (below) 

 The next step is to derive the analytical expressions, which are going to include 

the non-homogeneous sampling over the boundary regions, and for that reason we 

transfer the time domain into the frequency domain via the Laplace transform. For non-

homogenized samples we are decomposing the problem presented in the scheme on the 

figure 1 intro two sub-problems: 

  
Figure 4. Schemes of non-homogeneous problem decomposition 

 In the above formulation, we obtain two connected model:  
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{𝜕𝜃1𝜕𝑡 = 𝑎1 𝜕2𝜃1𝜕𝑥2 ,𝜕𝜃2𝜕𝑡 = 𝑎2 𝜕2𝜃2𝜕𝑥2 .        (159) 

 { 𝜃1(𝑥, 0) = 𝜃0(𝑥), 𝑥 ∈ (0, 𝜉1),𝜃2(𝑥, 0) = 𝜃0(𝑥), 𝑥 ∈ (𝜉1, 𝜉2).     (160) 

 {𝜃1(𝜉1, 𝑡) = 𝜃𝜉1(𝑡),𝜃2(𝜉2, 𝑡) = 𝜃𝜉2(𝑡).       (161) 

 {−𝑘1 𝜕𝜃1(0,𝑡)𝜕𝑥 = ℎ1(𝑇𝑎 − 𝜃1(0, 𝑡)),−𝑘2 𝜕𝜃2(0,𝑡)𝜕𝑥 = 𝑞2.       (162) 

 

 Here we introduce the dimensionless units: 
 

{  
   
    
 �̅�1 = 𝑥𝜉1 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒, �̅�1 ∈ [0,1],�̅�2 = 𝑥𝜉2 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒, �̅�2 ∈ [0,1],𝐹𝑜1 = 𝑎1𝑡𝜉12 , 𝐹𝑜2 = 𝑘2𝑡𝜌2𝑐𝑝2𝜉22 − 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟,𝐵𝑖1 = ℎ1𝜉1𝜆1 , 𝐵𝑖2 = ℎ2𝜉2𝜆2 − 𝐵𝑖𝑜 𝑛𝑢𝑚𝑏𝑒𝑟,�̅�1(�̅�1, 𝐹𝑜1) = 𝜃1(𝑥1,𝑡)−𝜃𝜉1𝜃𝜉1 , �̅�2(�̅�2, 𝐹𝑜2) = 𝜃2(𝑥2,𝑡)−𝜃𝜉2𝜃𝜉2 ,𝐾𝑖 = 𝑞2𝜉2𝜆2𝜃𝜉2 − 𝐾𝑖𝑟𝑝𝑖𝑐ℎ𝑒𝑣′𝑠 𝑛𝑢𝑚𝑏𝑒𝑟.

  (163) 

  

Using the above substitutions, we may transfer the model (159) – (162) to the 

following form: 

 

{ 𝜕�̅�1𝜕𝐹𝑜1 = 𝜕2�̅�1𝜕�̅�12 ,𝜕�̅�2𝜕𝐹𝑜2 = 𝜕2�̅�2𝜕�̅�22 .        (164) 

 {�̅�1(�̅�1, 0) = �̅�0(�̅�1),�̅�2(�̅�2, 0) = �̅�0(�̅�2).       (165) 

 {�̅�1(1, 𝐹𝑜1) = �̅�𝜉1(𝐹𝑜1),�̅�2(1, 𝐹𝑜2) = 0.       (166) 
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{𝜕�̅�1(0,𝐹𝑜1)𝜕�̅�1 = 𝐵𝑖�̅�1(0, 𝐹𝑜1),− 𝜕�̅�2(0,𝐹𝑜)𝜕�̅�2 = 𝐾𝑖.        (167) 

 

 This approach allows us to use the solution of the first layer as the boundary 

measurement for the condition in the second problem, while the general solutions for 

both will take the following form in the frequency domain: 

 

{  
  
   
 �̅�1(�̅�1, 𝐹𝑜1) = �̅�𝜉1 [𝐵𝑖�̅�1 + 1𝐵𝑖 + 1 ] − 2∑𝐵𝑖𝑠𝑖𝑛(𝜇𝑛)(�̅�1 − 1)𝐵𝑖 + cos2(𝜇𝑛) 𝑒−𝜇𝑛𝐹𝑜1∞

𝑛=1 ×
× [∫ �̅�0(𝜉1) sin(𝜇𝑛(1 − 𝜉1))𝑑𝜉1 − �̅�𝜉1𝜇𝑛1

0 ] , ℎ𝑒𝑟𝑒 𝜇𝑛 = 𝑡𝑎𝑛(𝜇𝑛′), 𝜇𝑛′ = 𝑖√𝑠𝑛,
𝜃2̃(𝑥2̅̅ ̅, 𝑠) = 𝐴𝑐ℎ[𝑥2̅̅ ̅√𝑠] + 𝐵𝑠ℎ[𝑥2̅̅ ̅√𝑠] − 1√𝑠∫ �̅�0(𝜉)𝑠ℎ[√𝑠(𝑥2̅̅ ̅ − 𝜉)]𝑑𝜉𝑥2̅̅̅̅

0 .
 

(168) 

 

 In order to find the unknown coefficients for the second equation, we will use 

received boundary conditions, for that reason we will differentiate the second equation 

of the (168) and obtain: 

 𝜕𝜃2̃(𝑥2̅̅̅̅ ,𝑠)𝜕𝑥2̅̅̅̅ = 𝐴√𝑠𝑠ℎ[𝑥2̅̅ ̅√𝑠] + 𝐵√𝑠𝑐ℎ[𝑥2̅̅ ̅√𝑠] − ∫ �̅�0(𝜉)𝑐ℎ[√𝑠(𝑥2̅̅ ̅ − 𝜉)]𝑑𝜉𝑥2̅̅̅̅0 . (169) 

 
 Now, by applying the second expression of (167), we will receive the explicit 

value of the coefficient 𝐵: 

 𝜕𝜃2̃(0, 𝑠)𝜕𝑥2̅̅ ̅ = 𝐴√𝑠𝑠ℎ[0√𝑠] + 𝐵√𝑠𝑐ℎ[0√𝑠] − ∫ �̅�0(𝜉)𝑐ℎ[√𝑠(0 − 𝜉)]𝑑𝜉0
0 → 

 → 𝐵√𝑠 = − 𝐾𝑖𝑠 .     (170) 

 

 At the same time from the second expression of the (166), we will determine the 

coefficient 𝐴 as: 

 {𝜃2̃(1, 𝑠) = 𝐴𝑐ℎ[√𝑠] − 𝐾𝑖𝑠√𝑠 𝑠ℎ[√𝑠] − 1√𝑠 ∫ �̅�0(𝜉)𝑠ℎ[√𝑠(1 − 𝜉)]𝑑𝜉10 = 0,𝐴 = 𝐾𝑖 𝑠ℎ[√𝑠]𝑠√𝑠 𝑐ℎ[√𝑠]+ 1√𝑠𝑐ℎ[√𝑠]∫ �̅�0(𝜉)𝑠ℎ[√𝑠(1 − 𝜉)]𝑑𝜉10 .  (171) 
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 By plugging the obtained coefficients to our general solution in the frequency 

domain, we will obtain the following expression: 

   𝜃2̃(𝑥2̅̅ ̅, 𝑠) = 𝐾𝑖 [𝑠ℎ[√𝑠]𝑐ℎ[𝑥2̅̅ ̅√𝑠] − 𝑠ℎ[𝑥2̅̅ ̅√𝑠]𝑐ℎ[√𝑠]]𝑠√𝑠 𝑐ℎ[√𝑠] + 

 + 𝑐ℎ[𝑥2̅̅ ̅√𝑠]√𝑠𝑐ℎ[√𝑠]∫ �̅�0(𝜉)𝑠ℎ[√𝑠(1 − 𝜉)]𝑑𝜉1
0 − 

 − 1√𝑠 ∫ �̅�0(𝜉)𝑠ℎ[√𝑠(𝑥2̅̅ ̅ − 𝜉)]𝑑𝜉𝑥2̅̅̅̅0 .     

          (172) 

 

 We will simplify the above equation by using the following trigonometrical 

identities 𝑠ℎ(𝑥)𝑐ℎ(𝑦) − 𝑠ℎ(𝑦)𝑐ℎ(𝑥) = 𝑠ℎ(𝑥 − 𝑦) and reducing the integral 

expressions to a similar form, we obtain: 

 𝜃2̃(𝑥2̅̅ ̅, 𝑠) = 𝐾𝑖 𝑠ℎ[√𝑠(1 − 𝑥2̅̅ ̅)]𝑠√𝑠 𝑐ℎ[√𝑠] + 

 + 1√𝑠𝑐ℎ[√𝑠]∫ �̅�0(𝜉)𝑠ℎ[√𝑠(1 − 𝑥2̅̅ ̅)]𝑐ℎ[√𝑠𝜉]𝑑𝜉𝑥2̅̅̅̅
0 + 

 + 1√𝑠𝑐ℎ[√𝑠]∫ �̅�0(𝜉)𝑠ℎ[√𝑠(1 − 𝜉)]сℎ[𝑥2̅̅ ̅√𝑠]𝑑𝜉1
0 . 

          (173) 

 

 The key part of the further work in derivation procedure for considered case is 

to obtain the inverse transform of the received expressions in order to derive real time 

domain solution. The inverse Laplace transform is applied term by term to (173) in 

accordance with the second decomposition theorem. The numerator and denominator 

of the first term in (173) are expanded as follows, knowing the expansion formulas for 

hyperbolic functions: 
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{   
  
   𝑠ℎ(𝑥) = 𝑥 + 𝑥33! + 𝑥55! +⋯ ,𝑠ℎ[√𝑠(1 − 𝑥2̅̅ ̅)] = √𝑠(1 − 𝑥2̅̅ ̅) + √𝑠3(1−𝑥2̅̅̅̅ )33! +⋯ == √𝑠 [(1 − 𝑥2̅̅ ̅) + 𝑠3(1−𝑥2̅̅̅̅ )33! +⋯] ,𝑐ℎ(𝑥) = 1 + 𝑥22! + 𝑥44! +⋯ ,𝑠√𝑠 𝑐ℎ[√𝑠] = 𝑠√𝑠 [1 + 𝑠2! + 𝑠24! +⋯] .

   (174) 

 

Taking into account above notations, our first term will be transformed into: 

 𝐾𝑖 𝑠ℎ[√𝑠(1−𝑥2̅̅̅̅ )]𝑠√𝑠 𝑐ℎ[√𝑠] = 𝐾𝑖 [(1−𝑥2̅̅̅̅ )+𝑠(1−𝑥2̅̅ ̅̅ )33! +⋯]𝑠(1+ 𝑠2!+⋯) .   (175) 

 

Taking into account the fact that the numerator and denominator of expression 

(175) are the polynomials with respect to the frequency variable, applying the inverse 

transformation, we can use the second expansion theorem. The second decomposition 

theorem allows us to determine the original from the image and says that if 𝐹(𝑠) = 𝐴(𝑠)𝐵(𝑠) 
is a rational proper and irreducible fraction, where s1, s2, s3, … , sk are zeros of the 

denominator, then the original of this image function has the form: 

 𝑓(𝑡) = ∑ 𝑟𝑒𝑠[𝐹(𝑠𝑘)𝑒𝑠𝑘𝑡]𝑠𝑘 = ∑ 𝐴(𝑠𝑘)𝐵′(𝑠𝑘) 𝑒𝑠𝑘𝑡𝑠𝑘 . (176) 

 

It should be noted that equality (176) is satisfied only if all poles of 𝐹(𝑠) are of 

the first order, that is, they are simple. Note that a point a is a pole if 𝑙𝑖𝑚𝑧→𝑎|𝑓(𝑧)| = +∞, 

and also, if in the decomposition 𝑓(𝑧) in a Laurent series in the ring 0 < |𝑧 − 𝑎| < 𝑅 

the principal part has a finite number of terms. If the first term of the main part of the 

series contains (𝑧 − 𝑎)−𝑛, then we can consider the pole to be simple. In order to 

determine the zeros of the denominator (175), we will consider zero roots separately 

from other roots. For that reason, according to the second decomposition theorem, we 

will write the original of the first term of the solution (173) in the form: 

 𝐿−1 [𝐾𝑖 Ф(𝑠)𝜑(𝑠)] = Ф(0)𝜑′(0) + ∑ Ф(𝑠𝑛)𝜑′(𝑠𝑛)∞𝑛=1 𝑒𝑠𝑛𝐹𝑜.   (177) 

 

 By considering the first term of (177), we will observe the following fact: 

 

{ Ф(0) = [(1 − �̅�) + 𝑠(1−�̅�)33! +⋯]𝑠=0 = (1 − �̅�),𝜑′(0) = [𝑠 (1 + 𝑠2! +⋯ )′ + 𝑠′ (1 + 𝑠2! +⋯)]𝑠=0 = 1.   (178) 
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 It will give us the null root 𝐾𝑖(1 − �̅�). By considering other roots when 𝑛 ≥ 1, 

we will use: 

 {𝑠ℎ(𝑖𝑥) = 𝑖𝑠𝑖𝑛(𝑥), 𝑠ℎ[𝑥] = 1𝑖 𝑠𝑖𝑛(𝑖𝑥),𝑐ℎ(𝑖𝑥) = cos(𝑥) , 𝑐ℎ(𝑥) = 𝑐𝑜𝑠(𝑖𝑥).     (179) 

 

 Using above identities, we will receive: 

 

{  
  Ф(𝑠𝑛) = 1𝑖 sin(𝑖√𝑠[1 − �̅�]) ,𝜑′(𝑠𝑛) = (𝑠√𝑠𝑐ℎ√𝑠)′ = √𝑠2 (3𝑐ℎ√𝑠 + √𝑠𝑠ℎ√𝑠) == √𝑠2 (3 cos(𝑖√𝑠𝑛) + √𝑠𝑛𝑖 sin(𝑖√𝑠𝑛)) .    (180) 

 

 We will consider the series (177) by applying the (180) identities and obtain 

another convenient form: 

 ∑ 2 sin(𝑖√𝑠𝑛[1−�̅�])𝑒𝑠𝑛𝐹𝑜𝑖√𝑠(3 cos(𝑖√𝑠𝑛)+√𝑠𝑛𝑖 sin(𝑖√𝑠𝑛))∞𝑛=1 .    (181) 

 

 The obtained expression above we will multiply and divide over 𝑖2, then we will 

denote by 𝜇𝑛 = 𝑖√𝑠𝑛, the above expression will take the form: 

 

{  
  ∑ 2 sin(𝑖√𝑠𝑛[1−�̅�])𝑒𝑠𝑛𝐹𝑜𝑖√𝑠(3 cos(𝑖√𝑠𝑛)+√𝑠𝑛𝑖 sin(𝑖√𝑠𝑛))∞𝑛=1 = −∑ 2 sin(𝜇𝑛[1−�̅�])𝑒−𝜇𝑛2𝐹𝑜𝜇𝑛(𝜇𝑛 sin(𝜇𝑛)−3 cos(𝜇𝑛))∞𝑛=1 ,

𝐾𝑖 𝑠ℎ[√𝑠(1−𝑥2̅̅̅̅ )]𝑠√𝑠 𝑐ℎ[√𝑠] = 𝐾𝑖 [(1 − 𝑥2̅̅ ̅) − ∑ 2 sin(𝜇𝑛[1−�̅�])𝑒−𝜇𝑛2𝐹𝑜𝜇𝑛(𝜇𝑛 sin(𝜇𝑛)−3 cos(𝜇𝑛))∞𝑛=1 ] .  (182) 

 

 By analogy we apply the second decomposition theorem of operational calculus 

towards second and third terms of our general solution (173): 

 {Ф(𝑠) = [√𝑠(1 − �̅�) + √𝑠3(1−�̅�)33! +⋯] [1 + 𝑠𝜉22! +⋯] ,𝜑′(𝑠) = [√𝑠𝑐ℎ√𝑠]′ = 12√𝑠 (𝑐ℎ√𝑠 + √𝑠𝑠ℎ√𝑠).   (183) 

 

 Which results in the following quotient: 

 Ф(𝑠)𝜑′(𝑠) = 2√𝑠𝑠ℎ[√𝑠(1−�̅�)𝑐ℎ(√𝑠𝜉)]𝑐ℎ√𝑠+√𝑠𝑠ℎ√𝑠 .    (184) 
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 Taking into account that we have the frequency variable 𝑠, our null root will be 

equal to zero, i.e., 
Ф(0)𝜑′(0) = 0. By taking into account the trigonometrical identities (179), 

we will find the inverse transform as the following series: 

 𝐿−1 [Ф(𝑠)𝜑′(𝑠)] = ∑ 2√𝑠𝑛(1/𝑖)𝑠𝑖𝑛[𝑖√𝑠𝑛(1−�̅�)]𝑐𝑜𝑠(𝑖√𝑠𝑛𝜉)cos(𝑖√𝑠𝑛)+√𝑠𝑛(1/𝑖) sin(𝑖√𝑠𝑛)∞𝑛=1 𝑒𝑠𝑛𝐹𝑜 .   (185) 

 

 Similarly, like in the previous term, we will take the resulting expression to 

multiply and divide it by 𝑖2, after that we will denote by 𝜇𝑛 = 𝑖√𝑠𝑛, then the above 

series will take the form: 

 𝐿−1 [Ф(𝑠)𝜑′(𝑠)] = ∑ 2𝜇𝑛𝑠𝑖𝑛[𝜇𝑛(1−�̅�)]𝑐𝑜𝑠(𝜇𝑛𝜉)𝜇𝑛 sin(𝜇𝑛)−cos(𝜇𝑛)∞𝑛=1 𝑒−𝜇𝑛2𝐹𝑜 .   (186) 

 

 Thus, the original of the second term of the general solution takes the form: 

 𝐿−1 [Ф(𝑠)𝜑′(𝑠)] = ∑ 2𝜇𝑛𝑠𝑖𝑛[𝜇𝑛(1−�̅�)]𝜇𝑛 sin(𝜇𝑛)−cos(𝜇𝑛)∞𝑛=1 𝑒−𝜇𝑛2𝐹𝑜 ∫ �̅�0(𝜉)𝑐𝑜𝑠(𝜇𝑛𝜉)𝑑𝜉�̅�0 . (187) 

 

By analogy we will write the third term of the general solution (173) and 

determine the zeros of the denominator by determining the values 𝜇𝑛: 

 Ф(𝑠)𝜑(𝑠) = 𝑠ℎ[√𝑠(1−𝜉)]сℎ[𝑥2̅̅̅̅ √𝑠]√𝑠𝑐ℎ[√𝑠] = (𝑠ℎ√𝑠𝑐ℎ(√𝑠𝜉)−𝑠ℎ(√𝑠𝜉)𝑐ℎ√𝑠)сℎ[𝑥2̅̅̅̅ √𝑠]√𝑠𝑐ℎ[√𝑠] . (188) 

 

 Considering the denominator, we will extract the characteristic equation 𝑐ℎ√𝑠 =0, which is equivalent to cos(𝑖√𝑠) = 0, then, we will get 𝑖√𝑠𝑛 = 𝜋𝑛2 , that is 𝑠𝑛 =− 𝜋2𝑛24  or which is the same as 𝜇𝑛 = 𝜋𝑛2 , which is the set of roots of the characteristic 

equations of the considered system. By applying these characteristic equation roots 

towards (188), we will derive: 

 

{ Ф(𝑠)𝜑(𝑠) = 𝑠ℎ√𝑠𝑐ℎ(√𝑠𝜉)сℎ[𝑥2̅̅̅̅ √𝑠]√𝑠𝑐ℎ[√𝑠]Ф(𝑠)𝜑′(𝑠) = 2√𝑠𝑠ℎ√𝑠𝑐ℎ(√𝑠𝜉)сℎ[𝑥2̅̅̅̅ √𝑠]√𝑠𝑠ℎ[√𝑠]−𝑐ℎ[√𝑠]     (189) 

 

 Applying now the trigonometrical identities (179) towards above equation and 

denoting by 𝑖√𝑠𝑛 = 𝜇𝑛, we will receive the original of the third term: 

 { 𝐿−1 [Ф(𝑠)𝜑′(𝑠)] = ∑ 2𝜇𝑛 sin(𝜇𝑛)𝑐𝑜𝑠(𝜇𝑛𝜉)с𝑜𝑠[𝑥2̅̅̅̅ 𝜇𝑛]𝜇𝑛𝑠𝑖𝑛[𝜇𝑛]−𝑐𝑜𝑠[𝜇𝑛]∞𝑛=1 𝑒−𝜇𝑛2𝐹𝑜,𝐿−1 [Ф(𝑠)𝜑′(𝑠)] = ∑ 2𝜇𝑛 sin(𝜇𝑛)с𝑜𝑠[𝑥2̅̅̅̅ 𝜇𝑛]𝜇𝑛𝑠𝑖𝑛[𝜇𝑛]−𝑐𝑜𝑠[𝜇𝑛]∞𝑛=1 𝑒−𝜇𝑛2𝐹𝑜 ∫ �̅�0(𝜉)𝑐𝑜𝑠(𝜇𝑛𝜉)𝑑𝜉10 .  (190) 
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 Now by collecting together the identities (185), (187) and (190), we will receive 

the original of particular solution for the second decomposed model in dimensionless 

units: 

 𝜃2(𝑥2̅̅ ̅, 𝐹𝑜) = 𝐾𝑖 [(1 − 𝑥2̅̅ ̅) −∑ 2sin(𝜇𝑛[1 − �̅�]) 𝑒−𝜇𝑛2𝐹𝑜𝜇𝑛(𝜇𝑛 sin(𝜇𝑛) − 3 cos(𝜇𝑛))∞
𝑛=1 ] + 

 +∑ 2𝜇𝑛𝑠𝑖𝑛[𝜇𝑛(1 − �̅�)]𝜇𝑛 sin(𝜇𝑛) − cos(𝜇𝑛)∞
𝑛=1 𝑒−𝜇𝑛2𝐹𝑜∫ �̅�0(𝜉)𝑐𝑜𝑠(𝜇𝑛𝜉)𝑑𝜉�̅�

0 + 

 +∑2𝜇𝑛 sin(𝜇𝑛) с𝑜𝑠[𝑥2̅̅ ̅𝜇𝑛]𝜇𝑛𝑠𝑖𝑛[𝜇𝑛] − 𝑐𝑜𝑠[𝜇𝑛]∞
𝑛=1 𝑒−𝜇𝑛2𝐹𝑜∫�̅�0(𝜉)𝑐𝑜𝑠(𝜇𝑛𝜉)𝑑𝜉1

0  

            (191) 

 

 Further by using the trigonometrical identities of the form: 𝑠𝑖𝑛[𝜇𝑛(1 − �̅�)] =𝑠𝑖𝑛𝜇𝑛 𝑐𝑜𝑠(𝜇𝑛�̅�) − 𝑠𝑖𝑛(𝜇𝑛�̅�) 𝑐𝑜𝑠 𝜇𝑛, and taking into account the characteristic 

equation of the system, 𝑐𝑜𝑠 𝜇𝑛 = 0, we will get s𝑖𝑛𝜇𝑛 = (−1)𝑛+1 , that means that 𝑠𝑖𝑛(𝜇𝑛(1 − �̅�)) = (−1)𝑛+1 𝑐𝑜𝑠(𝜇𝑛�̅�). The final analytical solution will take the 

following form: 

 

𝜃2(𝑥2̅̅ ̅, 𝐹𝑜) = 𝐾𝑖 [(1 − 𝑥2̅̅ ̅) −∑8cos (𝜋𝑛�̅�2 ) 𝑒−𝜋2𝑛22 𝐹𝑜𝜋2𝑛2∞
𝑛=1 ] + 

 +∑ 2с𝑜𝑠 [𝜋𝑛�̅�2 ]∞𝑛=1 𝑒−𝜋2𝑛22 𝐹𝑜 ∫ �̅�0(𝜉)𝑐𝑜𝑠 (𝜋𝑛2 𝜉) 𝑑𝜉10  (192) 

   

 Since in the first problem solution we have only unknown heat flux over the inlet 

boundary, we use the computational model of the bulb lamp in order to simulate the 

process of heating flux from the environment and deduce the values of the heat flux, 

and to measure such values of the heat flux at x = 0, we model numerically by the finite 

element method the conductive, convective and radiative heat exchanges in an 

incandescent lamp filled with argon with a technical voltage of 220V in order to 

determine the point values of the heat flux. For the referent date we refer to SN RK 

4.04-04-2013, which state that in outdoor electric lighting networks the voltage 

380/220 V AC with grounded neutral is used. For the power supply of lighting devices, 

a voltage of not more than 220 V AC or DC should be utilized, we present below the 

average field distribution for the heat flux to derive the data over the boundary points 
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of the considered lamp, first the corresponding figure for structured mesh and 

streamlines: 

 

 
  

Figure 5. Conductive streamline heat flux (left), structured mesh over axisymmetric 

region 

  

 The above computational mesh, based on the finite element method with the help 

of sampling of the test and basis functions, was performed for the considered multi-

physical additional problem, which results further utilized for the model input 

boundary parameters as the heat flux. The method performed via construction of the 

scalar product of the general equation and the arbitrary functions with further 

integration over the domain, which results in further construction of the infinite-

dimensional function space, that is the Hilbert space with specific properties induced 

by Euclidian norm. This problem formulation is referred to as the pointwise-

formulation, so-called the Galerking method, may be treated further by the Green’s 
first identity results in weak formulation that relaxes the posed conditions over arbitrary 

basis functions. With the proposed weak formulation, it is possible to discretize the 

posed mathematical model equations an obtain the numerical model equations which 

correspond approximately to continuous model. Following these assumptions, the 

conductive heat flux 𝑄(𝑥) is presented as a linear combination of a set of basis 

functions 𝜓𝑖 that belong to the subspace of the constructed Hilbert space, i.e., 𝑄(𝑥) ≈
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∑ 𝑄𝑖𝜓𝑖𝑖 , where 𝑖 = 1,2,…𝑁. That approximation results in construction of the system 

of 𝑁 linear equations. Once the proposed system is discretized the system of linear 

equations presented by the matrix form, which is also referred as the stiffness matrix. 

Two neighboring basis functions afterwards share two triangular elements in common. 

These functions do not share the elements itself, but they have one element vertex in 

common. The obtained solution of the system of algebraic equations via iterative 

numerical algorithm gives an approximation of the solution to the system of partial 

differential equations that describe the physical process. The denser the constructed 

mesh, the closer the approximate solution gives results to the actual solution of 

continuous model. For instance, the one-dimensional dynamical system modelled by 

domain ℧: [𝑥1, 𝑥2]  ∪ [𝑡1, 𝑡2] is meshed by integra-interpolation approximations and 

formulas: 

 

{  
  ∆𝑥 = 𝑥2−𝑥1𝑁 , ∆𝑡 = 𝑡2−𝑡1𝑀 ,𝑥𝑖 = 𝑥1 + 𝑖∆𝑥, 𝑡𝑗 = 𝑡1 + 𝑗∆𝑡,𝜕𝑄𝜕𝑡 ≈ 𝑄𝑖𝑗+1−𝑄𝑖𝑗∆𝑡 , 𝜕2𝑄𝜕𝑥2 ≈ 𝑄𝑖+1𝑗 −2𝑄𝑖𝑗+𝑄𝑖−1𝑗(∆𝑥)2 .    (193) 

 

 Although the above assumptions could be sampled in accordance with the chose 

numerical accuracy resulting in selection of one of the suitable numerical scheme, this 

still illustrates the general idea of the constructed mesh and the finite element method 

utilized for discretization. For instance, the following approximations of the time 

marching scheme of the thermal components of the flux with the heat source 𝑔, using 

the Galerkin method could be written as the following explicit and implicit forms 

correspondingly: 

 

{   
  
    
 𝜌𝑐𝑝 𝜕𝑄𝜕𝑡 ∑ ∫ 𝜓𝑖𝜓𝑗𝑑𝑉 + ∑ 𝑄𝑖 ∫ 𝑘∇𝜓𝑖 ∙ ∇𝜓𝑗𝑑𝑉℧𝑖℧𝑖 ++∑ 𝑄𝑖 ∫ (−𝑘𝑄𝑖∇𝜓𝑖 ∙ n)𝜓𝑗𝑑𝑆𝜕℧𝑖 = ∫ 𝑔(∑ 𝑄𝑖𝜓𝑖𝑖 )℧ 𝜓𝑗𝑑𝑉,𝜌𝑐𝑝 𝑄𝑖𝑗+1−𝑄𝑖𝑗∆𝑡 ∑ ∫ 𝜓𝑖𝜓𝑗𝑑𝑉 + ∑ 𝑄𝑖𝑗+1 ∫ 𝑘∇𝜓𝑖 ∙ ∇𝜓𝑗𝑑𝑉℧𝑖℧𝑖 ++∑ 𝑄𝑖𝑗+1 ∫ (−𝑘𝑄𝑖𝑗+1∇𝜓𝑖 ∙ n)𝜓𝑗𝑑𝑆𝜕℧𝑖 = ∫ 𝑔(∑ 𝑄𝑖𝑗+1𝜓𝑖𝑖 )℧ 𝜓𝑗𝑑𝑉,𝜌𝑐𝑝 𝑄𝑖𝑗+1−𝑄𝑖𝑗∆𝑡 ∑ ∫ 𝜓𝑖𝜓𝑗𝑑𝑉 + ∑ 𝑄𝑖𝑗 ∫ 𝑘∇𝜓𝑖 ∙ ∇𝜓𝑗𝑑𝑉℧𝑖℧𝑖 ++∑ 𝑄𝑖𝑗 ∫ (−𝑘𝑄𝑖𝑗∇𝜓𝑖 ∙ n)𝜓𝑗𝑑𝑆𝜕℧𝑖 = ∫ 𝑔(∑ 𝑄𝑖𝑗𝜓𝑖𝑖 )℧ 𝜓𝑗𝑑𝑉.

 (194) 

 

In practice, most of the modern time-stepping algorithms usually automatically 

switched between explicit and implicit steps depending on the problem posed. The 

difference equation (194) is further replaced with a polynomial expression that may 

vary in sampled order or the step length depending on the evolution of the solution in 

time. Most modern time-marching schemes are automatically controlled by the time 

evolution of the numerical solution. It is non-representative to depict the basis of the 
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quadratic basis functions in 3-D by using the second-order elements, like tetrahedral, 

pyramidal, hexahedral etc., but color fields mapped on the domain may be used to plot 

the function values on the element surfaces giving us the illustration of the obtained 

solution. Regarding the distribution of the principal fields inside of the bulb, the 

average values during the first 5 minutes are represented by the figure below: 

 
   

  

Figure 6. Temperature field (left), velocity magnitude (right) 

 

 As for the heat flux along the lamp surface, we may take an average value from 

the below output: 

 

 
Figure 7. Conductive heat flux during 5 minutes in cross-section over the boundary 

arc-length 
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Afterwards we present the computational results for the difference values 

between the measured and computational values of the sampled devices along time-

domain: 

 

 
Figure 8. Difference values at selected measuring device and evaluated 

temperatures through iterations 

  

Concerning the estimated parameters 𝜋1, we may observe the gradual approach 

towards the stationary values by performance of the algorithm – 1, when we 

determining the minimized values of the objective functions (121) and (122): 

 

 
Figure 9. The density estimation of the first sub-domain 

 

By the gradual decrease of the estimated parameters, we observe by the above 

figures that our initial approximations were overestimated, since the same behavior we 

have for the volumetric heat capacity: 
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Figure 10. Volumetric heat capacity estimation 

 

 The same tendency we receive by computing the heat transfer and thermal 

conductivity coefficients estimators via the proposed algorithm: 

 

 
Figure 11. Heat transfer determination over the first sub-domain 

 

Since the conductivity parameter perceive the same overestimated initial guess, 

we also obtain the same gradual decrease towards stationary value: 
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Figure 12. Heat conductivity parameter estimation 

 

For the second sub-domain problem we intentionally select the underestimated 

approximations for initial iteration in order to verify if the algorithm will demonstrate 

same smoothness in approaching the stationary values: 

 

 

 
Figure 13. Second layer parameters estimation 

 

However, for the geometrical characteristic, we perform estimations for both 

under and overestimated initial sampling, in order to compare their convergency rates: 

 



68 
 

 
Figure 14. Geometrical characteristic estimation 

 

As could be clearly observable from above figures, we have a stable approach 

towards the stationary values by appropriate selection of the initial samplings. 

However, if we would determine the parameters sequentially as presented in our 

algorithm – 1, the tunning of parameters is not necessary as discussed in regularization 

issues in [80]. This fact is critical, as could be observed in various experimental works 

[81 – 83], where the regularization of the inverse problem affects the results and 

optimal convergency order. At the same time, the convergency issues could be 

considered to be improved by appropriate sample of the iterative approach if certain 

stability condition constrains would be utilized for the posed model [84 – 88]. Since 

the measurement devices are also subjects that introduce the measurement error, we 

perform the test for noise simulation over the suggested algorithm. While the stable 

approach for exact value determination from both under and overestimated cases could 

be achieved by the meaningful samplings of some physical constraints represented by 

the governing coefficient in the recurrent computational formulas. Thus, in such case 

the sequential selection of the mentioned constrains, parameters tunning will be not 

necessary [89]. However, it was discussed by different investigations [90-92], that the 

parameter value utilized for the regularized inverse problems critically affects the 

obtained results and optimal selected order of convergency. The noise simulation is 

considered as the divergency free vector field via the noise error introduction: 

 𝑇�̃� = 𝑇𝜉(1 + 𝜉𝑛).      (195) 

 

 Here the introduced 𝜉𝑛 is prescribed error of the measuring device considered at 

selected point, that we assume as the smooth-step sigmoid-like interpolation and 

clamping function as depicted on below figure where we depict the normalized 

frequency for selected samples: 

 



69 
 

 
Figure 15. Noise analysis for selected sampled measurements 

 

 The smoothness in the above profile reflects that the prescribed error is analogue 

of the simplex noise scaling procedure, and that the algorithm has high tendency to 

stability perseverance towards introduced measurements fluctuations.  

 

3.2. Experimental design for inverse problem of the thermoelastic stress 

analysis model  

 

For the second multiphysical model results validation, we perform the following 

numerical experiment. We consider a thin plate with fixed boundary edges constrain 

with homogeneous isotropic domain subjected to gravity load and thermal expansion 

due to introduced heat inward and outward fluxes in parallel directions. We consider a 

case with structural steel in order to perceive small fluctuations and the referent 

parameters are derived from typical normative documentation. The key formulation of 

the posed design is to evaluate the field distributions with normative referent 

parameters and afterwards perform the algorithm – 2 to adjust the key physical 

parameters according to set measurement data over the boundary edges. Following this 

approach iteratively we will seek computations with evaluated coefficients and 

continue simultaneously observing the functional behavior. The referent parameters 

are presented in the table below. 

 

Table 1. Reference physical parameters derived from typical normative 

Name Value Unit 

Heat capacity at constant 

pressure 
475[J/(kg*K)] J/(kg·K) 

Thermal conductivity 44.5[W/(m*K)] W/(m·K) 
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Name Value Unit 

Coefficient of thermal 

expansion 
12.3e-6[1/K] 1/K 

Density 7850[kg/m^3] kg/m³ 
Young's modulus 200e9[Pa] Pa 

Poisson's ratio 0.30 1 

Lamé parameter λ 1.15e11[Pa] Pa 

   

 Afterwards we introduce the physically controlled mesh over the domain which 

satisfies statistics presented in the below table – 2. The initial choice of the reference 

parameters is a key point in algorithm – 2, since the general convergency of the iterative 

mentioned algorithm will depend on the closeness level of the initial approximations 

towards the exact real values. 

 

Table 2. Mesh statistics 

Description Value 

 

Minimum element quality 0.2609 

Average element quality 0.6278 

Tetrahedron 16157 

Triangle 10700 

Edge element 380 

Vertex element 8 

Maximum element size 0.055 

Minimum element size 0.004 

Curvature factor 0.4 

Resolution of narrow regions 0.7 

Maximum element growth rate 1.4 

  

 Since we are aimed to compare the functional values at each iteration, we 

evaluate the comparison of the key physical quantities, that are the gradient magnitude 

of the temperature field, the principal stress major component, and the domain 

displacement field. We will observe the gradual decrease of the potential energy 

surface profile which is presented by the posed functionals. Introducing the sampled 

physically controlled mesh towards our continuous domain with the above statistics 

presented in table 2, we perform the direct numerical simulation by simple numerical 

approach such as the discretized finite difference method for the posed model keeping 

the stability condition in accordance with the physically controlled mesh, in accordance 

with the described approximation finite element method via the system (193) – (194). 

Firstly, the discretization procedure may be illustrated via the formulas presented in 

system (196) through the covering of considered domain by the mesh elements 𝑥𝑖 =𝑖∆𝑥, where ∆𝑥 = 𝐿𝑁 , 𝑖 = 0,𝑁̅̅ ̅̅ ̅. We will demonstrate the discretized analogue of the 

posed continuous model for the system (34) – (37) as follows: 
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𝜌(𝑥𝑖)𝑐𝑝(𝑥𝑖) 𝑌𝑖𝑗+1−𝑌𝑖𝑗∆𝑥 = 𝜆 (𝑥𝑖+12) 𝑌𝑖+1𝑗 −𝑌𝑖𝑗(∆𝑥)2 − 𝜆 (𝑥𝑖−12) 𝑌𝑖𝑗+𝑌𝑖−1𝑗(∆𝑥)2 .  (196) 

 𝜆(𝑥0) 𝑌1𝑗−𝑌0𝑗∆𝑥 = ℎ𝑜𝑢𝑡 (𝑌0𝑗 − 𝑇𝑜𝑢𝑡(𝑥0)).      (197) 

 𝜆(𝑥𝑁) 𝑌𝑁𝑗−𝑌𝑁−1𝑗∆𝑥 = −ℎ𝑖𝑛𝑠 (𝑌𝑁𝑗 − 𝑇𝑜𝑢𝑡(𝑥0)).     (198) 

 𝑌𝑖0 = 𝑇0(𝑥).          (199) 

 

The introduced discrete system (196) – (197) may be calculated for values of 𝑌(𝑥𝑖), 𝑖 = 0,𝑁̅̅ ̅̅ ̅ via any iterative method that gives the best convergency rate 

depending on the preferred computational time, available memory available to sustain 

the high accuracy level by increasing the meshing points with respect to the length of 

considered medium. 

 

 

 
Figure 16. Displacement field with 

reference parameters 

 

 
Figure 17. Displacement field with 

analytically evaluated parameters 
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Figure 18. Temperature gradient 

magnitude with reference parameters 

 

 
Figure 19. Temperature gradient 

magnitude with analytically evaluated 

parameters 

 

 
Figure 20. Stress distribution with 

reference parameters 

 

 
Figure 21. Stress distribution with 

analytically evaluated parameters 

 

 

 The temperature gradient magnitude presents small fluctuations due to the linear 

thermal expansion as a response to the uniformly distributed loads introduced along 

with the principal stresses over the nodes of fixed constraints. We also may note the 

maximum displacement at the center where the dissipation of energy demonstrates its 

maximum value so that the stress inside solid is minimum over discussed region. 

Above figures (16) – (21) are demonstrating the typical profiles for the posed 

mathematical model (16) – (23). The scenario is altered after re-evaluated key physical 

parameters which are the domains of objective functions from the algorithms – 2. 

However, this alternation is only applicable towards the temperature gradient 

magnitude, since the introduce fluctuations are sufficiently small to introduce the high 

level of oscillations towards the energy dissipation of the structural steel plate. The 

figures below illustrate the evaluation of the key physical parameters of discussed 

thermoelastic stress analysis model. 

 



73 
 

 
Figure 22. Thermal conductivity parameter evaluation through each iteration 

 

 On the figure 22 we may note that the determination of parameters with the 

analytical approach is performed faster in comparison to the numerical functional 

minimization and it illustrates the gradual decrease, since the initial guess had 

underestimated value. 

 
Figure 23. Thermal expansion parameter evaluation over each iteration 

 

 The above figure 23 has the same patterns as the thermal conductivity evaluation 

profile, even though the referent value had such small order, we still perceive 

approximately the same number of iterations in the algorithm – 2. 
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Figure 24. The Young’s modulus parameter determination through each iteration 

 

 As could be observed on the above scatters, we choose the values for initial 

approximations to be overestimated and obtained the gradual increase of corrected 

value in this case, that contrasts with the overestimated initial samples. However,  the 

algorithm provides a smooth convergency rate to the exact values in both cases.  

 

 
Figure 25. Functional minimization over parameters on each iteration 

  

 The monotonous decrease of the functional value could be observed on the above 

scatter plot, that is figure 25. The decrement rate strictly depends on the proper choice 

of the governing coefficient and initial sample, as could be deduced by observing 

different parameters’ functionals. For example, the Young’s modulus parameter has a 
lower rate of convergency for the proposed algorithm – 2 in comparison to the thermal 

conductivity parameter evaluation manner. The appropriate error tolerance may be 

introduced for the functional minimization by: 

 |𝐽𝑛+1(𝜋°) − 𝐽𝑛(𝜋°)| ≤ 𝜀     (200) 



75 
 

 

 Where the parameter 𝜀 is a prescribed error tolerance that we may introduce in 

order to control the iterations number for determination parameter 𝜋°. 
 

 3.3.   Experimental design for quasi-linearized problem with non-

homogenized boundary conditions  

 

 In the current subchapter we will illustrate the approach towards analytical 

solution derivation with the case when instead of homogenization of the posed model 

(34) – (38) we perform the linearization via the decomposition of the general problem 

into several sub-problems connected via the continuity conditions: 

 

{  
  
  𝜌(𝑥)𝑐𝑝(𝑥) 𝜕𝜃𝜕𝑡 = 𝜕𝜕𝑥 (𝑘(𝑥) 𝜕𝜃𝜕𝑥) , 𝒙 ∈ Ω −𝑘(𝑥) 𝜕𝜃𝜕𝑥𝑥=0 = ℎ𝑖𝑛𝑠(𝜃 − 𝑇𝑖𝑛𝑠)𝑥=0,𝑘(𝑥) 𝜕𝜃𝜕𝑥𝑥=𝐿 = ℎ𝑖𝑛𝑠(𝜃 − 𝑇𝑜𝑢𝑡)𝑥=𝐿,𝜃𝑡=0 = 𝑇0.

→  
{   
   𝜌1𝑐𝑝1 𝜕𝜃𝜕𝑡 = 𝑘1 𝜕𝜃𝜕𝑥 , 𝒙 ∈ [𝟎, 𝝃𝟏]−𝑘1 𝜕𝜃𝜕𝑥𝑥=0 = ℎ𝑖𝑛𝑠(𝜃 − 𝑇𝑖𝑛𝑠)𝑥=0,𝜃𝑥=𝜉1 = 𝑇𝜉 ,𝜃𝑡=0 = 𝑇0.

→ 

 

→ {  
  𝜌2𝑐𝑝2 𝜕𝜃𝜕𝑡 = 𝑘2 𝜕𝜃𝜕𝑥 , 𝒙 ∈ [𝝃𝟏, 𝑳]𝑘2 𝜕𝜃𝜕𝑥𝑥=𝐿 = ℎ𝑜𝑢𝑡(𝜃 − 𝑇𝑜𝑢𝑡)𝑥=𝐿 ,𝜃𝑥=𝜉1 = 𝑇𝜉 ,𝜃𝑡=0 = 𝑇0.

    (201) 

 

The sequence of systems (201) presents the decomposition scheme towards 

initially formulated direct problem. Afterwards we separately consider both obtained 

system and investigate their Laplace transforms. 

 ℒ [𝜌1𝑐𝑝1 𝜕𝜃𝜕𝑡 − 𝑘1 𝜕2𝜃𝜕𝑥2] = ℒ [𝜌1𝑐𝑝1 𝜕𝜃𝜕𝑡] − ℒ [𝑘1 𝜕2𝜃𝜕𝑥2] = 

 = | ℒ[𝜃(𝑥, 𝑡)] = ∫ 𝑒−𝑝𝑡𝜃(𝑥, 𝑡)𝑑𝑡 = �̃�(𝑥, 𝑝)+∞0 ,ℒ [𝜌1𝑐𝑝1 𝜕𝜃(𝑥,𝑡)𝜕𝑡 ] = 𝜌1𝑐𝑝1 ∫ 𝑒−𝑝𝑡𝜕𝜃(𝑥,𝑡)𝜕𝑡 𝑑𝑡 = 𝜌1𝑐𝑝1[𝑝�̃�(𝑥, 𝑝) − 𝜃(𝑥, 0)].+∞0 | =  

 

 = {𝜌1𝑐𝑝1[𝑝�̃�(𝑥, 𝑝) − 𝜃0] − 𝑘1 𝜕2�̃�𝜕𝑥2 = 0,𝑘1�̃�′′ − 𝜌1𝑐𝑝1𝑝�̃� = −𝜌1𝑐𝑝1𝑇0.    (202) 
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The last received equation in (196) is a non-homogeneous second-order 

differential equation with respect to the spatial variable. By analogy we transform the 

boundary conditions and receive: 
 

 {−𝑘1 𝜕�̃�𝜕𝑥𝑥=0 = ℎ𝑖𝑛𝑠(�̃� − �̃�𝑖𝑛𝑠)𝑥=0,�̃�𝑥=𝜉1 = �̃�𝜉 .     (203) 

 

The general solution of obtained governing equation (202) has the following 

form through undetermined coefficients: 

 

 �̃�(𝑥, 𝑝) = 𝐴𝑒√𝜌1𝑐𝑝1𝑝𝑘1 𝑥 + 𝐵𝑒−√𝜌1𝑐𝑝1𝑝𝑘1 𝑥 + �̃�𝑛.ℎ(𝑥, 𝑝).  (204) 

 

Where the term �̃�𝑛.ℎ(𝑥, 𝑝) is the solution of non-homogeneous equation in the 

frequency domain, that depend on the heat source and type of ambient conditions. 

Using the conditions (203), we will construct the following system to determine the 

unknown coefficients in (204): 

 

 

{  
  𝐴𝑒√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 + 𝐵𝑒−√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 = �̃�𝜉 − �̃�н.р.(𝜉, 𝑝),𝐵 (𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 − ℎ𝑖𝑛𝑠) − 𝐴 (𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 + ℎ𝑖𝑛𝑠) == �̃�н.р.(0, 𝑝)ℎ𝑖𝑛𝑠 − ℎ𝑖𝑛𝑠�̃�𝑖𝑛𝑠 + 𝑘1 𝜕�̃�н.р.(0,𝑝)𝜕𝑥 .   (205) 

 

The expression (205) will have the following equivalent matrix form 𝐴𝑥 = 𝐵, 

where: 

 

{   
  
   𝐴 = ( 𝑒√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 𝑒−√𝜌1𝑐𝑝1𝑝𝑘1 𝜉−𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 − ℎ𝑖𝑛𝑠 𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 − ℎ𝑖𝑛𝑠) ,
𝐵 = ( �̃�𝜉 − �̃�н.р.(𝜉, 𝑝)�̃�н.р.(0, 𝑝)ℎ𝑖𝑛𝑠 − ℎ𝑖𝑛𝑠�̃�𝑖𝑛𝑠 + 𝑘1 𝜕�̃�н.р.(0,𝑝)𝜕𝑥 ) ,
𝑥 = (𝐴𝐵) , 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 (204).

     (206) 
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We will directly determine unknown coefficients 𝑥 by the expression 𝐴−1𝐵, if 

the matrix 𝐴 is invertible, for that reason we verify: 

 

{  
  
  ∆𝐴 = 𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 [𝑒√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 + 𝑒−√𝜌1𝑐𝑝1𝑝𝑘1 𝜉] − ℎ𝑖𝑛𝑠 [𝑒−√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 − 𝑒√𝜌1𝑐𝑝1𝑝𝑘1 𝜉] ,

𝐴−1 = 1∆𝐴( 
 𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 − ℎ𝑖𝑛𝑠 −𝑒−√𝜌1𝑐𝑝1𝑝𝑘1 𝜉
𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 − ℎ𝑖𝑛𝑠 𝑒√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 ) 

 . (207) 

 

Observing the above trivial expressions, we will determine the unknown vector 

by: (𝐴𝐵) = 

 

=
( 
   
   [  
  (𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 −ℎ𝑖𝑛𝑠)[�̃�𝜉−�̃�н.р.(𝜉,𝑝)]−𝑒−√𝜌1𝑐𝑝1𝑝𝑘1 𝜉[�̃�н.р.(0,𝑝)ℎ𝑖𝑛𝑠−ℎ𝑖𝑛𝑠�̃�𝑖𝑛𝑠+𝑘1𝜕�̃�н.р.(0,𝑝)𝜕𝑥 ]∆𝐴 ]  

  

[  
  (𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 −ℎ𝑖𝑛𝑠)[�̃�𝜉−�̃�н.р.(𝜉,𝑝)]+𝑒√𝜌1𝑐𝑝1𝑝𝑘1 𝜉[�̃�н.р.(0,𝑝)ℎ𝑖𝑛𝑠−ℎ𝑖𝑛𝑠�̃�𝑖𝑛𝑠+𝑘1𝜕�̃�н.р.(0,𝑝)𝜕𝑥 ]∆𝐴 ]  

  ) 
   
   . 

           (208) 

So that the particular solution for the first sub-problem will take the following 

form: 

  �̃�(𝑥, 𝑝) = 
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= [  
  [𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 −ℎ𝑖𝑛𝑠][�̃�𝜉−�̃�н.р.(𝜉,𝑝)]𝑐ℎ(√𝜌1𝑐𝑝1𝑝𝑘1 𝑥)∆𝐴 +
+ [�̃�н.р.(0,𝑝)ℎ𝑖𝑛𝑠−ℎ𝑖𝑛𝑠�̃�𝑖𝑛𝑠+𝑘1𝜕�̃�н.р.(0,𝑝)𝜕𝑥 ](𝑠ℎ(√𝜌1𝑐𝑝1𝑝𝑘1 𝜉−√𝜌1𝑐𝑝1𝑝𝑘1 𝑥))∆𝐴 ]  

  +  

 

     +�̃�н.р.(𝑥, 𝑝).     (209) 

 

The inverse Laplace transform is applied term by term to (209) in accordance 

with the second expansion theorem. The numerator and denominator of the first term 

in (209) are expanded separately, by knowing the expansion formulas for hyperbolic 

functions: 

{  
   
   
  
   
   
   
 sh(x) = x + x33! + x55! +⋯ ,ch(x) = 1 + x22! + x44! +⋯ ,𝑠ℎ (√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 − √𝜌1𝑐𝑝1𝑝𝑘1 𝑥) = (√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 − √𝜌1𝑐𝑝1𝑝𝑘1 𝑥) +

+ (√𝜌1𝑐𝑝1𝑝𝑘1 𝜉−√𝜌1𝑐𝑝1𝑝𝑘1 𝑥)33! + (√𝜌1𝑐𝑝1𝑝𝑘1 𝜉−√𝜌1𝑐𝑝1𝑝𝑘1 𝑥)55! +⋯
𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 𝑐ℎ (√𝜌1𝑐𝑝1𝑝𝑘1 𝜉) = 𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 + 𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 (√𝜌1𝑐𝑝1𝑝𝑘1 𝜉)22! +

+ 𝑘1√𝜌1𝑐𝑝1𝑝𝑘1 (√𝜌1𝑐𝑝1𝑝𝑘1 𝜉)44! +⋯ ,
ℎ𝑖𝑛𝑠𝑠ℎ (√𝜌1𝑐𝑝1𝑝𝑘1 𝜉) = ℎ𝑖𝑛𝑠√𝜌1𝑐𝑝1𝑝𝑘1 𝜉 + ℎ𝑖𝑛𝑠(√𝜌1𝑐𝑝1𝑝𝑘1 𝜉)33! +

+ ℎ𝑖𝑛𝑠(√𝜌1𝑐𝑝1𝑝𝑘1 𝜉)55! +⋯ .

 (210) 

 

By the second decomposition theorem that was applied in the part 3.1 we will 

analogically look for the nulls of denominators in order to deduce the inverse transform 

of the received expressions. However, in this quasi-linearized case, we will perform it 

numerically by constructing the following objective function. 
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𝑘1𝜌1𝑐𝑝1𝑝𝑛ℎ𝑖𝑛𝑠2 − 𝑡ℎ2 (√𝜌1𝑐𝑝1𝑝𝑛𝑘1 𝜉) = 𝑓(𝑝𝑛) → 𝑚𝑖𝑛.  (211) 

 

Where we present the frequency variable in a polar form 𝑝𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛 =𝑟𝑛(𝑐𝑜𝑠𝜑𝑛 + 𝑖𝑠𝑖𝑛𝜑𝑛). Numerically evaluating the first several roots, enough to 

consider the fluctuations of the signal to decease for (211), we may construct the 

analytical solution of the direct first sub-problem by the following series: 

 

𝜃(𝑥, 𝑡) = ∑ [𝑘1√𝜌1𝑐𝑝1𝑝𝑛𝑘1 − ℎ𝑖𝑛𝑠] [�̃�𝜉 − �̃�н.р.(𝜉, 𝑝𝑛)]𝑐ℎ (√𝜌1𝑐𝑝1𝑝𝑛𝑘1 𝑥)𝑘1𝜌1𝑐𝑝1ℎ𝑖𝑛𝑠2 − sech2√𝜌1𝑐𝑝1𝑝𝑛𝑘1 𝜉 𝑡ℎ (√𝜌1𝑐𝑝1𝑝𝑛𝑘1 𝜉)(√𝜌1𝑐𝑝1𝑘1𝑝𝑛 𝜉)
15
𝑛=0 e−𝑝𝑛t + 

 

+∑ [�̃�н.р.(0, 𝑝𝑛)ℎ𝑖𝑛𝑠 − ℎ𝑖𝑛𝑠�̃�𝑖𝑛𝑠 ++𝑘1 𝜕�̃�н.р.(0,𝑝𝑛)𝜕𝑥 ]( 
 𝑠ℎ( 

√𝜌1𝑐𝑝1𝑝𝑛𝑘1 𝜉 −−√𝜌1𝑐𝑝1𝑝𝑛𝑘1 𝑥) ) 
 e−𝑝𝑛t15𝑛=0 + 𝜃н.р.(𝑥, 𝑡) 

           (212) 

 

Analogically we perform the same manipulations over the second sub-domain 

problem and obtain the following system with undetermined coefficients: 

 

{   
  
   𝐴(𝑘2√𝜌2𝑐𝑝2𝑝𝑘2 𝑒√𝜌2𝑐𝑝2𝑝𝑘2 𝐿 − ℎ𝑜𝑢𝑡𝑒√𝜌2𝑐𝑝2𝑝𝑘2 𝐿) −
−𝐵 (𝑘2√𝜌2𝑐𝑝2𝑝𝑘2 𝑒−√𝜌2𝑐𝑝2𝑝𝑘2 𝐿 + ℎ𝑜𝑢𝑡𝑒−√𝜌2𝑐𝑝2𝑝𝑘2 𝐿) == ℎ𝑜𝑢𝑡�̃�н.р.(𝐿, 𝑝) − ℎ𝑜𝑢𝑡�̃�𝑜𝑢𝑡 − 𝑘2 𝜕�̃�н.р.(𝐿,𝑝)𝜕𝑥 ,𝐴𝑒√𝜌2𝑐𝑝2𝑝𝑘2 𝜉1 + 𝐵𝑒−√𝜌2𝑐𝑝2𝑝𝑘2 𝜉1 = �̃�𝜉 − �̃�н.р.(𝜉, 𝑝).

   (213) 

Again, by rewriting the posed system in the matrix form 𝐴𝑥 = 𝐵, where 𝑥 is the 

vector of unknown coefficients, we obtain: 
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{  
  𝐴 = (𝑘2𝛾𝑒𝛾𝐿 − ℎ𝑜𝑢𝑡𝑒𝛾𝐿 −𝑘2𝛾𝑒−𝛾𝐿 − ℎ𝑜𝑢𝑡𝑒−𝛾𝐿𝑒𝛾𝜉1 𝑒−𝛾𝜉1 ) ,
𝐵 = (ℎ𝑜𝑢𝑡�̃�н.р.(𝐿, 𝑝) − ℎ𝑜𝑢𝑡�̃�𝑜𝑢𝑡 − 𝑘2 𝜕�̃�н.р.(𝐿,𝑝)𝜕𝑥�̃�𝜉 − �̃�н.р.(𝜉, 𝑝) ) .     (214) 

 

Where 𝛾 = √𝜌2𝑐𝑝2𝑝𝑘2  for simplicity. We will verify if the matrix 𝐴 is invertible: 

 ∆𝐴 = 𝑘2√𝜌2𝑐𝑝2𝑝𝑘2 (𝑒√𝜌2𝑐𝑝2𝑝𝑘2 𝐿−√𝜌2𝑐𝑝2𝑝𝑘2 𝜉1 + 𝑒√𝜌2𝑐𝑝2𝑝𝑘2 𝜉1−√𝜌2𝑐𝑝2𝑝𝑘2 𝐿) +  

 +ℎ𝑜𝑢𝑡 (𝑒√𝜌2𝑐𝑝2𝑝𝑘2 𝜉1−√𝜌2𝑐𝑝2𝑝𝑘2 𝐿 − 𝑒√𝜌2𝑐𝑝2𝑝𝑘2 𝐿−√𝜌2𝑐𝑝2𝑝𝑘2 𝜉1) ≠ 0.    (215) 

 

In that case the system coefficients will take the following form: 

 

 (𝐴𝐵) = ( 
   
𝑒−𝛾𝜉1(ℎ𝑜𝑢𝑡�̃�н.р.(𝐿,𝑝)−ℎ𝑜𝑢𝑡�̃�𝑜𝑢𝑡−𝑘2𝜕�̃�н.р.(𝐿,𝑝)𝜕𝑥 )++(𝑘2𝛾𝑒−𝛾𝐿+ℎ𝑜𝑢𝑡𝑒−𝛾𝐿)(𝑘2𝛾𝑒−𝛾𝐿+ℎ𝑜𝑢𝑡𝑒−𝛾𝐿)∆𝐴−𝑒𝛾𝜉1(ℎ𝑜𝑢𝑡�̃�н.р.(𝐿,𝑝)−ℎ𝑜𝑢𝑡�̃�𝑜𝑢𝑡−𝑘2𝜕�̃�н.р.(𝐿,𝑝)𝜕𝑥 )++(𝑘2𝛾𝑒𝛾𝐿−ℎ𝑜𝑢𝑡𝑒𝛾𝐿)(�̃�𝜉−�̃�н.р.(𝜉,𝑝))∆𝐴 ) 

   .  (216) 

 

Determining the analytical solution in the frequency domain and applying 

further the second decomposition theorem we will derive the analytical solution for the 

second sub-problem in the real time domain. However, the key reason for that 

experimental design is to discuss the general peculiarities of such methodology, which 

is the necessity of determining the nulls of the received polynomials in the frequency 

domain around attenuation parameter 𝑝𝑛, that could be also considered as the inverse 

problem itself, that is we are keen to determine the characteristic roots in order to 

evaluate the decomposition, while the roots are the part of transcendental equations 

posed in the frequency domain. Meanwhile, there is a strong dependency on whether 

we implement the numerical or analytical investigations to solve the posed problem 

and the obtained results over the determined physical coefficients. For instance, if we 
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will consider separately the first sub-problem of the discussed experimental design and 

rewrite its solution in the frequency domain by: 

 

𝑇(𝑥, 𝑝) = √𝜌𝑐𝑝𝑝𝑘 𝜉−√𝜌𝑐𝑝𝑝𝑘 𝑥+( 
 16(√𝜌𝑐𝑝𝑝𝑘 )3𝜉3−𝜌𝑐𝑝𝑝2𝑘 𝜉2√𝜌𝑐𝑝𝑝𝑘 𝑥+
+√𝜌𝑐𝑝𝑝𝑘 𝜉𝜌𝑐𝑝𝑝2𝑘 𝑥2−16(√𝜌𝑐𝑝𝑝𝑘 )3𝑥3) 

 (ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠−−𝜕𝑇𝑛ℎ.𝑠.(0)𝜕𝑥 )
−√𝜌𝑐𝑝𝑝𝑘 −√𝜌𝑐𝑝𝑝𝑘 𝜌𝑐𝑝𝑝𝜉22𝑘 −ℎ𝑖𝑛𝑠−ℎ𝑖𝑛𝑠𝜌𝑐𝑝𝑝𝜉22𝑘 − 𝑇𝑛ℎ.𝑠.2 . (217) 

 

 We will note that in such formulation the roots could be investigated by the 

solution of the following problem: 

 

{  
   
    
 √𝜌𝑐𝑝𝑝𝑘 (1 − 𝜌𝑐𝑝𝑝𝜉22𝑘 ) = ℎ𝑖𝑛𝑠 (𝜌𝑐𝑝𝑝𝜉22𝑘 + 1) →

𝜌𝑐𝑝𝑝𝑘ℎ𝑖𝑛𝑠2 = [(𝜌𝑐𝑝𝑝𝜉22𝑘 +1)(1−𝜌𝑐𝑝𝑝𝜉22𝑘 )]
2 = 𝜌2𝑐𝑝2𝑝𝜉44𝑘2 +𝜌𝑐𝑝𝑝𝜉2𝑘 +11−𝜌𝑐𝑝𝑝𝜉2𝑘 +𝜌2𝑐𝑝2𝑝𝜉44𝑘2 →

𝑝2 [𝜌4𝑐𝑝3𝜉44𝑘3ℎ𝑖𝑛𝑠2 − 𝜌2𝑐𝑝2𝜉2𝑘2ℎ𝑖𝑛𝑠2 ] + 𝑝 [ 𝜌𝑐𝑝𝑘ℎ𝑖𝑛𝑠2 − 𝜌2𝑐𝑝2𝜉44𝑘2 − 𝜌𝑐𝑝𝜉2𝑘 ] = 1 →
𝑝1,2 = 𝑘𝜌𝑐𝑝[𝑘𝜌𝑐𝑝ℎ𝑖𝑛𝑠2 𝜉4+4𝑘2(ℎ𝑖𝑛𝑠2 𝜉2−1)]±4𝑘3ℎ𝑖𝑛𝑠2 √[ 𝜌𝑐𝑝𝑘ℎ𝑖𝑛𝑠2 −𝜌2𝑐𝑝2𝜉44𝑘2 −𝜌𝑐𝑝𝜉2𝑘 ]2+4[𝜌4𝑐𝑝3𝜉44𝑘3ℎ𝑖𝑛𝑠2 −𝜌2𝑐𝑝2𝜉2𝑘2ℎ𝑖𝑛𝑠2 ]2𝜌2𝑐𝑝2[𝜌2𝑐𝑝𝜉4−4𝑘𝜉2] .

            (218) 

 

These are the first two roots. However, from another side the solution (217) 

could be taken via the trigonometrical functions as: 

 

{   
   𝑇(𝑥, 𝑝) = 𝑖𝑠𝑖𝑛(𝑖√𝜌𝑐𝑝𝑝𝑘 𝜉−𝑖√𝜌𝑐𝑝𝑝𝑘 𝑥)(ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠−𝜕𝑇𝑛ℎ.𝑠.(0)𝜕𝑥 )

𝑐𝑜𝑠(𝑖√𝜌𝑐𝑝𝑝𝑘 𝜉)(√𝜌𝑐𝑝𝑝𝑘 +ℎ𝑖𝑛𝑠) + 𝑇𝑛ℎ.𝑠.2 ,
𝑇(𝑥, 𝑝) = 𝑠ℎ(√𝜌𝑐𝑝𝑝𝑘 𝜉−√𝜌𝑐𝑝𝑝𝑘 𝑥)(ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠−𝜕𝑇𝑛ℎ.𝑠.(0)𝜕𝑥 )

𝑐ℎ(√𝜌𝑐𝑝𝑝𝑘 𝜉)(−√𝜌𝑐𝑝𝑝𝑘 −ℎ𝑖𝑛𝑠) − 𝑇𝑛ℎ.𝑠.2 .   (219) 

 

By observing this form, we will deduce the root of denominator by: 
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{   
  
   𝑝𝑛 = 𝑘ℎ𝑖𝑛𝑠2𝜌𝑐𝑝 − 𝜋2𝑛2𝑘𝜌𝑐𝑝𝜉2 − 𝜋2𝑛𝑘𝜌𝑐𝑝𝜉2 − 𝜋2𝑘4𝜌𝑐𝑝𝜉2 = 𝜆ℎ𝑖𝑛𝑠2 − 𝜆𝜋2𝜉2 [𝑛2 + 𝑛 + 14] ,𝑝𝑛 = − 𝑘𝜋2𝑛2𝜌𝑐𝑝𝜉2 − 𝑘𝜋2𝑛𝜌𝑐𝑝𝜉2 − 𝑘𝜋24𝜌𝑐𝑝𝜉2 = − 𝜆𝜋2𝜉2 [𝑛2 + 𝑛 + 14] ,𝑐ℎ (√𝜌𝑐𝑝𝑝𝑘 𝜉) = 0,−√𝜌𝑐𝑝𝑝𝑘 − ℎ𝑖𝑛𝑠 ≠ 0.

  (220) 

 

 By investigations of the (220), we may note that: 

  ℎ (√𝜌𝑐𝑝𝑝𝑘 𝜉) = 0 → 𝑒√𝜌𝑐𝑝𝑝𝑘 𝜉+𝑒−√𝜌𝑐𝑝𝑝𝑘 𝜉2 = 𝑒−√𝜌𝑐𝑝𝑝𝑘 𝜉 [1 + 𝑒2√𝜌𝑐𝑝𝑝𝑘 𝜉] = 0. (221) 

  

 From which we may conclude two following facts: 

 

{  
  
  𝑒2√𝜌𝑐𝑝𝑝𝑘 𝜉 = −1,𝑒−√𝜌𝑐𝑝𝑝𝑘 𝜉 ≠ 0,

2√𝜌𝑐𝑝𝑝𝑛𝑘 𝜉 = 𝑖𝜋(2𝑛 + 1),
𝑝𝑛 = − 𝑘𝜋4𝜉2𝜌𝑐𝑝 (2𝑛 + 1) = − 𝜆𝜋4𝜉2 (2𝑛 + 1) = − 𝜆𝜋[2𝑛+1]4𝜉2 .

     (222) 

 

Where 𝜆 = 𝑘 𝜌𝑐𝑝⁄  and the polynomials and its derivatives of the parameter 𝑝 

will take the form: 

 

{  
  𝜑(𝑝) = 𝑐ℎ (√𝜌𝑐𝑝𝑝𝑘 𝜉)(−√𝜌𝑐𝑝𝑝𝑘 − ℎ𝑖𝑛𝑠)
𝜕𝜑𝜕𝑝 = √𝜌𝑐𝑝𝑘 𝜉𝑠ℎ(√𝜌𝑐𝑝𝑝𝑘 𝜉)(−√𝜌𝑐𝑝𝑝𝑘 −ℎ𝑖𝑛𝑠)−𝑐ℎ(√𝜌𝑐𝑝𝑝𝑘 𝜉)√𝜌𝑐𝑝𝑝𝑘2√𝑝

   (223) 
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While the general solution in the time domain may be rewritten as the following 

series: 

 

𝜃(𝑥, 𝑡) = ∑ √𝜆𝜋(2𝑛+1)2𝜉2 𝑠𝑖𝑛( 𝑥2𝜉√𝜋[2𝑛+1]−−12√𝜋[2𝑛+1] )(ℎ𝑖𝑛𝑠𝑇𝑖𝑛𝑠−−𝜕𝜃𝑛ℎ.𝑠.(0)𝜕𝑥 )
𝜉𝑠𝑖𝑛(√𝜋(2𝑛+1)2 )√𝜋𝜆(2𝑛+1)−𝑖( 2ℎ𝑖𝑛𝑠√𝜆 𝑠𝑖𝑛(√𝜋(2𝑛+1)2 )−−√𝜋(2𝑛+1)𝑐𝑜𝑠(√𝜋(2𝑛+1)))

𝑛≥0 𝑒−𝑘𝜋[2𝑛+1]4𝜌𝑐𝑝𝜉2 𝑡 − 𝜃𝑛ℎ.𝑠.2 .
            (224) 

 

 Obviously, the analytical form will provide more exact values for the evaluation 

of the key parameters’ values, since we may increase the number of terms for preferable 

convergency rate, while the deduced expression (212) has limitations in terms of 

accuracy for each computed null of the parameter 𝑝𝑛 via some numerical method and 

we are restricted by choosing of the number of roots, whereas in (224) the accuracy 

matter is not considered at all due to analyticity of the derived expression. 

 

3.4. Derivation of the exact expressions for the coefficient’s determination 
in selected case studies 

 

The expressions that we received in the previous part play the key role in 

derivations of the exact analytical expressions. Here we will demonstrate the further 

steps by considering the whole problem as the unite domain, thus without decomposing 

it to sub-problems, afterwards we will utilize the information obtained in the previous 

part to receive analytical expressions for the governing coefficients. The non-

decomposed problem in the frequency domain will have the following form: 

 

{   
   𝑘 𝜕2�̃�𝜕𝑥2 − 𝜌𝑐𝑝�̃� = −𝜌𝑐𝑇𝑖𝑛𝑖𝑡 → 𝑘�̃�′′ − 𝜌𝑐𝑝�̃� + 𝜌𝑐𝑇𝑖𝑛𝑖𝑡 = 0,𝑘(𝑥) 𝜕�̃�𝜕𝑥 |𝑥=0 = ℎ𝑜𝑢𝑡�̃�|𝑥=0−ℎ𝑜𝑢𝑡𝑇𝑖𝑛�̃�,𝑘(𝑥) 𝜕�̃�𝜕𝑥 |𝑥=𝐿 = ℎ𝑜𝑢𝑡𝑇𝑜𝑢𝑡̃ − ℎ𝑜𝑢𝑡�̃�|𝑥=𝐿 ,[�̃�]|𝑥=𝜉 = 0, [𝑘(𝑥) 𝜕�̃�𝜕𝑥] |𝑥=0 = 0.

 (225) 

 

 Whereas its general solution in the frequency domain will have: 
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�̃�ℎ.𝑠.(𝑥, 𝑝) = {𝐴𝑒√𝜌𝑐𝑝𝑘1 (𝑥) + 𝐵𝑒−√𝜌𝑐𝑝𝑘1 (𝑥) + �̃�𝑛𝑜𝑛−ℎ.𝑠.(𝑥), 𝑥 ∈ (0, 𝜉),𝐶𝑒√𝜌𝑐𝑝𝑘2 (𝑥) + 𝐷𝑒−√𝜌𝑐𝑝𝑘2 (𝑥) + �̃�𝑛𝑜𝑛−ℎ.𝑠.(𝑥), 𝑥 ∈ (𝜉, 𝐿).  (226) 

 

Where non-homogeneous solution could be derived through the sampled 

measurements by the following methodology. Using the measured temperatures, to 

obtain a smoothly differentiable and continuous functions suitable for the Laplace 

transform, we apply the interpolation polynomials of the discrete Fourier series, that 

is:  

 {𝑇𝑜𝑢𝑡(𝑡)  =   𝑎0  +  𝑎1𝑐𝑜𝑠(𝜔𝑡) + 𝑏1𝑠𝑖𝑛(𝜔𝑡) + 𝑎2𝑐𝑜𝑠(2𝜔𝑡) + 𝑏2𝑠𝑖𝑛(2𝜔𝑡),𝑇𝑖𝑛𝑖𝑡  =  𝑎0 + 𝑑𝑐𝑜𝑠(𝜔𝑥).
            (227) 

While the coefficients of interpolation are determined with 95% tolerance trust 

interval and presented in the below table with the following statistics: 

 

Table 3. Statistics for the adequacy of the interpolation model  

Parameter 𝑇𝑜𝑢𝑡(𝑡) 𝑇𝑖𝑛𝑖𝑡 
Residual sum of squares 6.19e-06 1.115e-19; 

Coefficient of determination (percentage 

of variance of dependent variable) 
0.9965 1 

Adjusted determination coefficient 0.9922 - 

Standard deviation: 0.001244 - 

 

While the coefficients itself are presented by the table below and determined via 

the curve fitting by parametrical and non-parametrical interpolation: 

 

Table 4. Interpolation coefficients determination 

Value 𝑇𝑜𝑢𝑡(𝑡) 𝑇𝑖𝑛𝑖𝑡 𝑎0 288.5  (288.5, 288.5) 289 𝑎1 −0.01198  (−0.01393,−0.01002) 6.005 𝑏1 0.006643  (0.004826, 0.008459) - 𝑎2 0.006566  (0.004053, 0.00908) - 𝑏2 −0.01052  (−0.01283,−0.008217) - 𝜔 0.1863  (0.183, 0.1897) 22.49 
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The profiles fittings will have the following interpolations: 

 

Figure 26. Interpolation profile of the samples around inwards flux boundary points 

 

 As for the initial time samples, we will have the following fit: 

 

 

Figure 27. Interpolation profile of the samples at initial time 

 

 Now we may perform the Laplace transform over the boundary condition as: 

 ℒ[𝑇𝑜𝑢𝑡(𝑡)]  =  1𝑎0  + 𝑎1𝑝𝑝2+𝜔2  + 𝑏1𝜔𝑝2+𝜔2  + 𝑎2𝑝𝑝2+4𝜔2  + 2𝜔𝑏2𝑝2+𝜔2 = 𝑇𝑜𝑢𝑡̃ (𝑝). (228) 
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While due to the equivalence of the polynomials order initial time samples will 

be determined analogically. By using the (228), we may determine the non-

homogeneous solution of the (226) by: 

 �̃�𝑛𝑜𝑛−ℎ.𝑠.(𝑥) = 𝑎𝑝 + 𝜌𝑐𝑑𝑘𝜔2+𝜌𝑐𝑝 𝑐𝑜𝑠[𝜔𝑥].    (229) 

 

 Therefore, the general solution (228) in the frequency domain will have the 

following form: 

 

�̃�𝑔.𝑠.(𝑥, 𝑝) = {  
  𝐴𝑒√𝜌𝑐𝑝𝑘1 (𝑥) + 𝐵𝑒−√𝜌𝑐𝑝𝑘1 (𝑥) + 𝑎𝑝 + 𝜌𝑐𝑑𝑘1𝜔2+𝜌𝑐𝑝 𝑐𝑜𝑠[𝜔𝑥], 𝑥 ∈ (0, 𝜉),𝐶𝑒√𝜌𝑐𝑝𝑘2 (𝑥) + 𝐷𝑒−√𝜌𝑐𝑝𝑘2 (𝑥) + 𝑎𝑝 + 𝜌𝑐𝑑𝑘2𝜔2+𝜌𝑐𝑝 𝑐𝑜𝑠[𝜔𝑥], 𝑥 ∈ (𝜉, 𝐿). 

            (230) 

 

 Now, we may apply the boundary conditions from (225) and deduce the matrix 

form for determination of unknown coefficients: 

 

{  
  𝐴𝑘1𝛾1 + 𝐵𝑘1𝛾1 − 𝛾2 = −ℎ𝑖𝑛𝑠𝑇𝑖𝑛�̃� + ℎ𝑖𝑛𝑠(𝐴 + 𝐵 + 𝛾2),𝐶𝑘2𝛾2𝑒𝛾2𝐿 − 𝐷𝑘2𝛾2𝑒−𝛾2𝐿 − 𝛾3 = ℎ𝑜𝑢𝑡𝑇𝑜𝑢𝑡̃ − ℎ𝑜𝑢𝑡(𝐶𝑒𝛾2𝐿 + 𝐷𝑒−𝛾2𝐿 + 𝛾4),𝐴𝑒𝛾1𝜉 + 𝐵𝑒−𝛾1𝜉 + 𝛾5 = 𝐶𝑒𝛾2𝜉 + 𝐷𝑒−𝛾2𝜉 + 𝛾6,𝐴𝑘1𝛾1𝑒𝛾1𝜉 − 𝑘1𝛾1𝐵𝑒−𝛾1𝜉 − 𝛾7 = 𝐶𝑘2𝛾2𝑒𝛾2𝜉 − 𝑘2𝛾2𝐷𝑒−𝛾2𝜉 − 𝛾8.  

            (231) 

 

 Where for the readability reasons we have denoted by introduced constants: 

 

{   
   √𝜌𝑐𝑝𝑘1 = 𝛾1,√𝜌𝑐𝑝𝑘2 = 𝛾2,𝑘2𝜔𝜌𝑐𝑑𝑘2𝜔2+𝜌𝑐𝑝 𝑠𝑖𝑛[𝜔𝐿] = 𝛾3, 𝑎𝑝 + 𝜌𝑐𝑑𝑘2𝜔2+𝜌𝑐𝑝 𝑐𝑜𝑠[𝜔𝐿] = 𝛾4,𝑎𝑝 + 𝜌𝑐𝑑𝑘1𝜔2+𝜌𝑐𝑝 𝑐𝑜𝑠[𝜔𝜉] = 𝛾5, 𝑎𝑝 + 𝜌𝑐𝑑𝑘2𝜔2+𝜌𝑐𝑝 𝑐𝑜𝑠[𝜔𝜉] = 𝛾6,𝜔 𝜌𝑐𝑑𝑘1𝜔2+𝜌𝑐𝑝 𝑠𝑖𝑛[𝜔𝜉] = 𝛾7, 𝜔 𝜌𝑐𝑑𝑘2𝜔2+𝜌𝑐𝑝 𝑠𝑖𝑛[𝜔𝜉] = 𝛾8.

   (232) 
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 After elementary algebraic manipulations over the system (231), we will receive 

the matrix form equation: 

 

( 1 −1 0 00 0 (𝑘2𝛾2𝑒𝛾2𝐿 + ℎ𝑜𝑢𝑡𝑒𝛾2𝐿) (ℎ𝑜𝑢𝑡𝑒−𝛾2𝐿 − 𝑘2𝛾2𝑒−𝛾2𝐿)𝑒𝛾1𝜉 𝑒−𝛾1𝜉 −𝑒𝛾2𝜉 −𝑒−𝛾2𝜉𝑘1𝛾1𝑒𝛾1𝜉 −𝑘1𝛾1𝑒−𝛾1𝜉 −𝑘2𝛾2𝑒𝛾2𝜉 𝑘2𝛾2𝑒−𝛾2𝜉 ) ∗ 
∗ (𝐴𝐵𝐶𝐷) = ( 

 𝑞0𝑝𝑘1𝛾1ℎ𝑜𝑢𝑡𝑇𝑜𝑢𝑡̃ − ℎ𝑜𝑢𝑡𝛾4 + 𝛾3𝛾6 − 𝛾5−𝛾8 + 𝛾7 ) 
 

.   (233) 

 

 By setting up the following corresponding notations: 

 

(𝜁1 𝜁2 0 00 0 𝜁3 𝜁4𝜁5 𝜁6 𝜁7 𝜁8𝜁9 𝜁10 𝜁11 𝜁12)(
𝐴𝐵𝐶𝐷) = (

𝜁13𝜁14𝜁15𝜁16).    (234) 

 

 We will obtain the expressions for undetermined coefficients of the system 

(231): 

 

{  
   
  
   
  𝐴 = 𝜁13(𝜁3𝜁6𝜁12 −𝜁3𝜁8𝜁10 − 𝜁4𝜁6𝜁11 + 𝜁4𝜁7𝜁10)++𝜁16(𝜁2𝜁3𝜁8 −𝜁2𝜁4𝜁7)−𝜁15(𝜁2𝜁3𝜁12 − 𝜁2𝜁4𝜁11)++𝜁14(𝜁2𝜁7𝜁12 − 𝜁2𝜁8𝜁11)𝜁1𝜁3(𝜁6𝜁12−𝜁8𝜁10)  − 𝜁1𝜁4(𝜁6𝜁11+𝜁7𝜁10 )+ 𝜁2𝜁3(𝜁8𝜁9 −𝜁5𝜁12 )++ 𝜁2𝜁4(𝜁5𝜁11 −𝜁7𝜁9) ,

𝐵 = −𝜁13(𝜁3𝜁5𝜁12 − 𝜁3𝜁8𝜁9 − 𝜁4𝜁5𝜁11+𝜁4𝜁7𝜁9)−𝜁16(𝜁1𝜁3𝜁8 − 𝜁1𝜁4𝜁7)++𝜁15(𝜁1𝜁3𝜁12 −𝜁1𝜁4𝜁11)−𝜁14(𝜁1𝜁7𝜁12 −𝜁1𝜁8𝜁11)𝜁1𝜁3(𝜁6𝜁12−𝜁8𝜁10)  − 𝜁1𝜁4(𝜁6𝜁11+𝜁7𝜁10 )+ 𝜁2𝜁3(𝜁8𝜁9 −𝜁5𝜁12 )++ 𝜁2𝜁4(𝜁5𝜁11 −𝜁7𝜁9) ,
 𝐶 =  𝜁14(𝜁1𝜁6𝜁12 −𝜁1𝜁8𝜁10 − 𝜁2𝜁5𝜁12 +𝜁2𝜁8𝜁9)−𝜁4𝜁16(𝜁1𝜁6 −𝜁2𝜁5)++𝜁4𝜁15(𝜁1𝜁10 −𝜁2𝜁9)−𝜁4𝜁13(𝜁2𝜁10 −𝜁6𝜁9)𝜁1𝜁3(𝜁6𝜁12−𝜁8𝜁10)  − 𝜁1𝜁4(𝜁6𝜁11+𝜁7𝜁10 )+ 𝜁2𝜁3(𝜁8𝜁9 −𝜁5𝜁12 )++ 𝜁2𝜁4(𝜁5𝜁11 −𝜁7𝜁9) ,

𝐷 = −𝜁14(𝜁1𝜁6𝜁11 − 𝜁1𝜁7𝜁10 − 𝜁2𝜁5𝜁11 + 𝜁2𝜁7𝜁9)+𝜁3𝜁16(𝜁1𝜁6 − 𝜁2𝜁5)−−𝜁3𝜁15(𝜁1𝜁10 −𝜁2𝜁9)+𝜁3𝜁13(𝜁5𝜁10 −𝜁6𝜁9)𝜁1𝜁3(𝜁6𝜁12−𝜁8𝜁10)  − 𝜁1𝜁4(𝜁6𝜁11+𝜁7𝜁10 )+ 𝜁2𝜁3(𝜁8𝜁9 −𝜁5𝜁12 ) + 𝜁2𝜁4(𝜁5𝜁11 −𝜁7𝜁9) .
(232) 
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 Afterwards we may analogically apply the above coefficients towards the 

previous methodology and determine the real time domain solution. However, since 

further we are keen to present the analytical terms for the physical coefficients 

determination itself, we continue by implementing the computations of the constructed 

system of objective functions via the Newton iterative algorithm. First of all, in order 

to construct the mentioned system, we implement two fundamental theorems of the 

operational calculus, which are the shifting and similarity that could be presented by 

the following expression: 

 

{   
   1𝑝 𝑒−√𝑝𝜆 𝑥 → 𝐸𝑟𝑓 ( 𝑥2𝜆√𝑡) ,𝐹(√𝑝)√𝑝 = 1√𝑝 1√𝑝𝑎 +ℎ𝑖𝑛𝑠 𝑒−√𝑝𝑎 𝑥 == 𝑎√𝜋𝑡 ∫ 𝑒−ℎ𝑖𝑛𝑠(𝜆𝜏−𝑥)−𝜏24𝑡𝑑𝜏∞𝑥𝑎 .    (233) 

 

 Here we substitute by 𝜉 = 𝜏+2𝜆ℎ𝑡2√𝑡  and deduce the solution in real time domain 

for the initially pose problem with open boundaries: 

  𝑢(𝑥, 𝑡) = 𝑢0 [𝑒𝑟𝑓 ( 𝑥2𝜆√𝑡) + 𝑒ℎ𝑥+𝑎2ℎ2𝑡𝑒𝑟𝑓𝑐 ( 𝑥2𝜆√𝑡 + 𝜆ℎ√𝑡)] = 

 

= 𝑢0 [  
  2√𝜋 ∫ 𝑒−𝑡2𝑑𝑡𝑥2𝜆√𝑡

0 + 𝑒ℎ𝑥+𝜆2ℎ2𝑡 2√𝜋 ∫ 𝑒−𝑡2𝑑𝑡∞
𝑥2𝜆√𝑡+𝜆ℎ√𝑡 ]  

  = 

 = 𝑢0 [ 2√𝜋 ∫ 𝑒−𝑡2𝑑𝑡𝑥2𝜆√𝑡0 + 𝑒 𝑞𝜆𝑢(0,𝑡)𝑥+( 𝑞𝑢(0,𝑡))2𝑡 2√𝜋 ∫ 𝑒−𝑡2𝑑𝑡∞( 𝑥2𝜆√𝑡+ 𝑞𝑢(0,𝑡)√𝑡) ].  (234) 

 

 Where 𝑢0 is the initial temperature, 𝑞 is the heat flux on the inward boundary 

and has the following form: 

 𝑘1𝑢0 [ 2√𝜋 + ℎ𝑖𝑛𝑠𝑒𝜆2ℎ𝑖𝑛𝑠2 𝑡𝑒𝑟𝑓𝑐(𝜆ℎ𝑖𝑛𝑠√𝑡) − 2√𝜋 𝑒𝜆2ℎ𝑖𝑛𝑠2 𝑡𝑒−(𝜆ℎ𝑖𝑛𝑠√𝑡)2] = 𝑞. (235) 

 



89 
 

 Using above deductions, now we may construct the system by introducing the 

distance 𝑤𝑖 to 𝑖𝑡ℎ measurement device: 

 

{  
   
   
   
   
  
   
   
   
   
  𝑢(𝑤1, 𝑡) − 𝑢0 [ 𝑒𝑟𝑓 (𝜉 𝜌1𝑐12𝑘1√𝑡) ++𝑒ℎ𝑖𝑛𝑠𝜉+(𝑘1𝜌1𝑐1)2ℎ𝑖𝑛𝑠2 𝑡𝑒𝑟𝑓𝑐 (𝜌1𝑐1(𝜉−𝑤𝑖)2𝑘1√𝑡 + 𝑘1𝜌1𝑐1 ℎ𝑖𝑛𝑠√𝑡)] == 𝑓1(𝑘10, 𝜌10, 𝑐10, ℎ𝑖𝑛𝑠0 , ),
𝑢(𝜉 − 𝑤2, 𝑡) − 𝑢0 [ 𝑒𝑟𝑓 (𝜉 𝜌1𝑐12𝑘1√𝑡) ++𝑒ℎ𝑖𝑛𝑠𝜉+(𝑘1𝜌1𝑐1)2ℎ𝑖𝑛𝑠2 𝑡𝑒𝑟𝑓𝑐 (𝜌1𝑐1(𝜉−𝑤𝑖)2𝑘√𝑡 + 𝑘1𝜌1𝑐1 ℎ𝑖𝑛𝑠√𝑡)] == 𝑓2(𝑘10, 𝜌10, 𝑐10, ℎ𝑖𝑛𝑠0  ),
𝑢(𝜉 + 𝑤3, 𝑡) − 𝑢0 [ 𝑒𝑟𝑓 (𝜉 𝜌2𝑐22𝑘2√𝑡) ++𝑒ℎ𝑜𝑢𝑡𝑥+(𝑘2𝜌2𝑐2)2ℎ𝑜𝑢𝑡2 𝑡𝑒𝑟𝑓𝑐 (𝜌2𝑐2(𝜉+𝑤𝑖)2𝑘2√𝑡 + 𝑘1𝜌1𝑐1 ℎ𝑜𝑢𝑡√𝑡)] == 𝑓3(𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0  ),𝑢(𝐿 − 𝑤4, 𝑡) − 𝑢0 [ 𝑒𝑟𝑓 (𝜉 𝜌2𝑐22𝑘2√𝑡) ++𝑒ℎ𝑜𝑢𝑡𝑥+(𝑘2𝜌2𝑐2)2ℎ𝑜𝑢𝑡2 𝑡𝑒𝑟𝑓𝑐 (𝜌2𝑐2(𝜉+𝑤𝑖)2𝑘2√𝑡 + 𝑘1𝜌1𝑐1 ℎ𝑜𝑢𝑡√𝑡)] == 𝑓4(𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0 ),𝑢(𝜉, 𝑡) − (𝑓1) = 𝑓5(𝑘10, 𝜌10, 𝑐10, ℎ𝑖𝑛𝑠0 , 𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0 )

𝑇𝑖𝑛𝑠 − 𝑢0 [ 𝑒𝑟𝑓 (𝜉 𝜌1𝑐12𝑘1√𝑡) ++𝑒ℎ𝑖𝑛𝑠𝜉+(𝑘1𝜌1𝑐1)2ℎ𝑖𝑛𝑠2 𝑡𝑒𝑟𝑓𝑐 (𝜌1𝑐1(𝜉−𝑤𝑖)2𝑘√𝑡 + 𝑘1𝜌1𝑐1 ℎ𝑖𝑛𝑠√𝑡)] == 𝑓6(𝑘10, 𝜌10, 𝑐10, ℎ𝑜𝑢𝑡0 ),𝑇𝑜𝑢𝑡 − 𝑢0 [ 𝑒𝑟𝑓 (𝜉 𝜌2𝑐22𝑘2√𝑡) ++𝑒ℎ𝑜𝑢𝑡𝑥+(𝑘2𝜌2𝑐2)2ℎ𝑜𝑢𝑡2 𝑡𝑒𝑟𝑓𝑐 (𝜌2𝑐2(𝜉+𝑤𝑖)2𝑘2√𝑡 + 𝑘1𝜌1𝑐1 ℎ𝑜𝑢𝑡√𝑡)] == 𝑓7(𝑘20, 𝜌20, 𝑐20, , ℎ𝑜𝑢𝑡0  ),𝑢(𝜉, 𝑡) − (𝑓2) = 𝑓6(𝑘10, 𝜌10, 𝑐10, ℎ𝑖𝑛𝑠0 , 𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0 ).

 

            (236) 

 

 Further, we may introduce the vector of unknowns: 

 𝑥0 = (𝑘10, 𝜌10, 𝑐10, 𝑘20, 𝜌20, 𝑐20, ℎ𝑖𝑛𝑠0 , ℎ𝑜𝑢𝑡0 ).   (237) 
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Also, we introduce the notation for the objective functions that should be 

minimized via the iterative approach: 

 

𝐹(𝑥) =
( 
   
   
 𝑓1(𝑘10, 𝜌10, 𝑐10, ℎ𝑖𝑛𝑠0 , )𝑓2(𝑘10, 𝜌10, 𝑐10, ℎ𝑖𝑛𝑠0  )𝑓3(𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0  )𝑓3(𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0  )𝑓4(𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0 )𝑓5(𝑘10, 𝜌10, 𝑐10, ℎ𝑖𝑛𝑠0 , 𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0 )𝑓6(𝑘10, 𝜌10, 𝑐10, ℎ𝑜𝑢𝑡0 )𝑓7(𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0  )𝑓8(𝑘10, 𝜌10, 𝑐10, ℎ𝑖𝑛𝑠0 , 𝑘20, 𝜌20, 𝑐20, ℎ𝑜𝑢𝑡0 )) 

   
   
 
.  (238) 

 

 Afterwards we may write the algorithm in the form of the following recurrent 

formula: 

 𝑥𝑘+1 = 𝑥𝑘 −𝑊−1(𝑥𝑘)𝐹(𝑥𝑘).    (239) 

 

 Where we have introduced the Wronskian matrix: 

 

𝑊 =

( 
   
   
   
  
𝜕𝑓1𝜕𝑘1 𝜕𝑓1𝜕𝜌1 𝜕𝑓1𝜕𝑐1 𝜕𝑓1𝜕𝑘2 𝜕𝑓1𝜕𝜌2 𝜕𝑓1𝜕𝑐2 𝜕𝑓1𝜕ℎ𝑖𝑛𝑠 𝜕𝑓1𝜕ℎ𝑜𝑢𝑡𝜕𝑓2𝜕𝑘1 𝜕𝑓2𝜕𝜌1 𝜕𝑓2𝜕𝑐1 𝜕𝑓2𝜕𝑘2 𝜕𝑓2𝜕𝜌2 𝜕𝑓2𝜕𝑐2 𝜕𝑓2𝜕ℎ𝑖𝑛𝑠 𝜕𝑓2𝜕ℎ𝑜𝑢𝑡𝜕𝑓3𝜕𝑘1 𝜕𝑓3𝜕𝜌1 𝜕𝑓3𝜕𝑐1 𝜕𝑓3𝜕𝑘2 𝜕𝑓3𝜕𝜌2 𝜕𝑓3𝜕𝑐2 𝜕𝑓3𝜕ℎ𝑖𝑛𝑠 𝜕𝑓3𝜕ℎ𝑜𝑢𝑡𝜕𝑓4𝜕𝑘1 𝜕𝑓4𝜕𝜌1 𝜕𝑓4𝜕𝑐1 𝜕𝑓4𝜕𝑘2 𝜕𝑓4𝜕𝜌2 𝜕𝑓4𝜕𝑐2 𝜕𝑓4𝜕ℎ𝑖𝑛𝑠 𝜕𝑓4𝜕ℎ𝑜𝑢𝑡𝜕𝑓5𝜕𝑘1 𝜕𝑓5𝜕𝜌1 𝜕𝑓5𝜕𝑐1 𝜕𝑓5𝜕𝑘2 𝜕𝑓5𝜕𝜌2 𝜕𝑓5𝜕𝑐2 𝜕𝑓5𝜕ℎ𝑖𝑛𝑠 𝜕𝑓5𝜕ℎ𝑜𝑢𝑡𝜕𝑓6𝜕𝑘1 𝜕𝑓6𝜕𝜌1 𝜕𝑓6𝜕𝑐1 𝜕𝑓6𝜕𝑘2 𝜕𝑓6𝜕𝜌2 𝜕𝑓6𝜕𝑐2 𝜕𝑓6𝜕ℎ𝑖𝑛𝑠 𝜕𝑓6𝜕ℎ𝑜𝑢𝑡𝜕𝑓7𝜕𝑘1 𝜕𝑓7𝜕𝜌1 𝜕𝑓7𝜕𝑐1 𝜕𝑓7𝜕𝑘2 𝜕𝑓7𝜕𝜌2 𝜕𝑓7𝜕𝑐2 𝜕𝑓7𝜕ℎ𝑖𝑛𝑠 𝜕𝑓7𝜕ℎ𝑜𝑢𝑡𝜕𝑓8𝜕𝑘1 𝜕𝑓8𝜕𝜌1 𝜕𝑓8𝜕𝑐1 𝜕𝑓8𝜕𝑘2 𝜕𝑓8𝜕𝜌2 𝜕𝑓8𝜕𝑐2 𝜕𝑓8𝜕ℎ𝑖𝑛𝑠 𝜕𝑓8𝜕ℎ𝑜𝑢𝑡) 

   
   
   
  

.   (240) 
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For the readability matter, we will present the explicit formulas derivation only 

for three parameters. However, by using the above notations and below derivation 

procedure explanations, it could be easily expanded towards eight parameters as well. 

Further, we will denote by 𝑎 = 𝑘𝜌𝑐𝑝. For the three parameters evaluation we may 

consider only the left side of multilayered domain and look for the following 

parameters: 

 

{  
  𝑢(𝜉, 𝑡1) − 𝑢0 [𝑒𝑟𝑓 ( 𝜉2𝑎√𝑡1) + 𝑒ℎ𝜉+𝑎2ℎ2𝑡1𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡1 + 𝑎ℎ√𝑡1)] = 𝑓1(𝑎, ℎ, 𝑢0),𝑢(𝜉, 𝑡2) − 𝑢0 [𝑒𝑟𝑓 ( 𝜉2𝑎√𝑡2) + 𝑒ℎ𝑥+𝑎2ℎ2𝑡2𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡2 + 𝑎ℎ√𝑡2)] = 𝑓2(𝑎, ℎ, 𝑢0),𝑢(𝜉, 𝑡3) − 𝑢0 [𝑒𝑟𝑓 ( 𝜉2𝑎√𝑡3) + 𝑒ℎ𝑥+𝑎2ℎ2𝑡2𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡3 + 𝑎ℎ√𝑡3)] = 𝑓2(𝑎, ℎ, 𝑢0). 
            (241) 

 

 The Wronskian in this case will be a 3 × 3 matrix with the minimization goal 

functions and unknown vectors: 

 

{  
  
   
 𝑊 = ( 

 𝜕𝑓1𝜕𝑎 𝜕𝑓1𝜕ℎ 𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓3𝜕𝑢0) 
 ,

𝑥0 = (𝑎0, ℎ0, 𝑢00),  𝐹(𝑥) = (𝑓1(𝑎, ℎ, 𝑢0)𝑓2(𝑎, ℎ, 𝑢0)𝑓3(𝑎, ℎ, 𝑢0)) .
     (242) 

 

 In order to perform the (238) recurrent formula, we have to determine the inverse 

of Wronskian 𝑊−1 by the Transposed matrix of Wronskian algebraic complements W∗T as well as the Wronskian determinant |𝑊|, such that 𝑊−1 = W∗T|W|: 
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|𝑊| = |
|
( 
   
𝜕𝑓1𝜕𝑎 𝜕𝑓1𝜕ℎ 𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓3𝜕𝑢0) 

   |
| = 𝜕𝑓1𝜕𝑎 ( 

 𝜕𝑓2𝜕ℎ 𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕ℎ 𝜕𝑓3𝜕𝑢0) 
 − 𝜕𝑓1𝜕ℎ ( 

 𝜕𝑓2𝜕𝑎 𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓3𝜕𝑢0) 
 + 

𝜕𝑓1𝜕𝑢0(𝜕𝑓2𝜕𝑎 𝜕𝑓2𝜕ℎ𝜕𝑓3𝜕𝑎 𝜕𝑓3𝜕ℎ) =  

 = 𝜕𝑓1𝜕𝑎 (𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0 − 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0) − 𝜕𝑓1𝜕ℎ (𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0 − 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0) + 

 + 𝜕𝑓1𝜕𝑢0 (𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ − 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ) = 

 = 𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0 − 𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0 − 𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0 + 𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0 + 𝜕𝑓1𝜕𝑢0 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ − − 𝜕𝑓1𝜕𝑢0 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ . 
            (243) 

 

 At the same time the transposed matrix of Wronskian algebraic complements 

will take the following form: 

 

𝑊∗𝑇 =
( 
   
   
 (𝜕𝑓2𝜕ℎ 𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕ℎ 𝜕𝑓3𝜕𝑢0) −(𝜕𝑓1𝜕ℎ 𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕ℎ 𝜕𝑓3𝜕𝑢0) (𝜕𝑓1𝜕ℎ 𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕ℎ 𝜕𝑓2𝜕𝑢0)−(𝜕𝑓2𝜕𝑎 𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓3𝜕𝑢0) (𝜕𝑓1𝜕𝑎 𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓3𝜕𝑢0) −(𝜕𝑓1𝜕𝑎 𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓2𝜕𝑢0)(𝜕𝑓2𝜕𝑎 𝜕𝑓2𝜕ℎ𝜕𝑓3𝜕𝑎 𝜕𝑓3𝜕ℎ) −(𝜕𝑓1𝜕𝑎 𝜕𝑓1𝜕ℎ𝜕𝑓3𝜕𝑎 𝜕𝑓3𝜕ℎ) (𝜕𝑓1𝜕𝑎 𝜕𝑓1𝜕ℎ𝜕𝑓2𝜕𝑎 𝜕𝑓2𝜕ℎ) ) 

   
   
 

.  (244) 

 

 Further the inverse matrix will have the following expression: 

 𝑊−1 = 𝑊∗𝑇|𝑊| = 
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= 1|𝑊|( 
 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0 − 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0 −(𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑢0 − 𝜕𝑓3𝜕ℎ 𝜕𝑓1𝜕𝑢0) 𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑢0 − 𝜕𝑓1𝜕𝑢0 𝜕𝑓2𝜕ℎ−(𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0 − 𝜕𝑓2𝜕𝑢0 𝜕𝑓3𝜕𝑎) 𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕𝑢0 − 𝜕𝑓1𝜕𝑢0 𝜕𝑓3𝜕𝑎 −(𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕𝑢0 − 𝜕𝑓1𝜕𝑢0 𝜕𝑓2𝜕𝑎)𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ − 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑎 −(𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ − 𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎) 𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ − 𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 ) 

 .  

(245) 

 

 By simplifying and opening some factors in the above expression, we may 

obtain: 

 𝑊−1(𝑥𝑘)𝐹(𝑥𝑘) = 

 

=
( 
   
 (𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0)𝑓1−(𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓3𝜕ℎ 𝜕𝑓1𝜕𝑢0)𝑓2+(𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕ℎ )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ−(𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0−𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕𝑎 )𝑓1+(𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 )𝑓2−(𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ(𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑎 )𝑓1−(𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 )𝑓2+(𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ −𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ) 

   
 . (246) 

 

 From the above identity, we may explicitly deduce the unknown physical 

coefficients: 

 𝑥𝑘 −𝑊−1(𝑥𝑘)𝐹(𝑥𝑘) =  

 

=
( 
   
 𝑎𝑘 − (𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0)𝑓1−(𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓3𝜕ℎ 𝜕𝑓1𝜕𝑢0)𝑓2+(𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕ℎ )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎℎ𝑘 − −(𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0−𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕𝑎 )𝑓1+(𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 )𝑓2−(𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ𝑢0𝑘 − (𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑎 )𝑓1−(𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 )𝑓2+(𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ −𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ) 

   
 

. (247) 

 

That gives us an opportunity to determine the following identities for recurrent 

evaluation of the physical parameters: 
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{  
  
  𝑎𝑘+1 = 𝑎𝑘 − (𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0)𝑓1−(𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓3𝜕ℎ 𝜕𝑓1𝜕𝑢0)𝑓2+(𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕ℎ )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ ,ℎ𝑘+1 = ℎ𝑘 − −(𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0−𝜕𝑓2𝜕𝑢0𝜕𝑓3𝜕𝑎 )𝑓1+(𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 )𝑓2−(𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ ,𝑢0𝑘+1 = 𝑢0𝑘 − (𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑎 )𝑓1−(𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 )𝑓2+(𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ −𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 )𝑓3𝜕𝑓1𝜕𝑎 𝜕𝑓2𝜕ℎ 𝜕𝑓3𝜕𝑢0−𝜕𝑓1𝜕𝑎 𝜕𝑓3𝜕ℎ 𝜕𝑓2𝜕𝑢0−𝜕𝑓1𝜕ℎ 𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕𝑢0+𝜕𝑓1𝜕ℎ 𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕𝑢0+𝜕𝑓1𝜕𝑢0𝜕𝑓2𝜕𝑎 𝜕𝑓3𝜕ℎ −𝜕𝑓1𝜕𝑢0𝜕𝑓3𝜕𝑎 𝜕𝑓2𝜕ℎ .

 (248) 

 

 The only part that we have to demonstrate for the derived set of parameters is 

the construction of the system of partial derivatives expressions: 

{  
   
   
   
   
  −𝑢0 [  

  − 𝜉𝑎2 2√𝜋 𝑒− 𝜉24𝑎2𝑡1 + 2𝑎𝑒ℎ𝜉𝑒𝑎2ℎ2𝑡1𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡1 + 𝑎ℎ√𝑡1) −
− 𝑒ℎ𝜉𝑒𝑎2ℎ2𝑡12𝑒( 𝜉2𝑎√𝑡1+𝑎ℎ√𝑡1)2(− 𝜉2𝑎2√𝑡1+ℎ√𝑡1)√𝜋 ]  

  = 𝜕𝑓1𝜕𝑎 ,
−𝑢0 [  

  − 𝜉𝑎2 2√𝜋 𝑒− 𝜉24𝑎2𝑡2 + 2𝑎𝑒ℎ𝜉𝑒𝑎2ℎ2𝑡2𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡2 + 𝑎ℎ√𝑡2) −
− 𝑒ℎ𝜉𝑒𝑎2ℎ2𝑡22𝑒( 𝜉2𝑎√𝑡2+𝑎ℎ√𝑡2)2(− 𝜉2𝑎2√𝑡2+ℎ√𝑡2)√𝜋 ]  

  = 𝜕𝑓2𝜕𝑎 ,
−𝑢0 [  

  − 𝜉𝑎2 2√𝜋 𝑒− 𝜉24𝑎2𝑡3 + 2𝑎𝑒ℎ𝜉𝑒𝑎2ℎ2𝑡3𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡3 + 𝑎ℎ√𝑡3) −
− 𝑒ℎ𝜉𝑒𝑎2ℎ2𝑡32𝑒( 𝜉2𝑎√𝑡3+𝑎ℎ√𝑡3)2(− 𝜉2𝑎2√𝑡3+ℎ√𝑡3)√𝜋 ]  

  = 𝜕𝑓3𝜕𝑎 .
 (249) 

 

 Which are the partial derivatives with respect to the first physical parameter. 

Then we have the similar system for the second parameter: 
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{  
   
  
   
  −𝑢0 [   

 (𝜉 + 2𝑎2𝑡1)𝑒ℎ𝜉+𝑎2ℎ2𝑡1𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡1 + 𝑎ℎ√𝑡1) −−2 𝑒( 𝜉2𝑎√𝑡1+𝑎ℎ√𝑡1)2𝑒ℎ𝜉+𝑎2ℎ2𝑡1𝑎√𝑡1√𝜋 ]   
 = 𝜕𝑓1𝜕ℎ ,

−𝑢0 [   
 (𝜉 + 2𝑎2𝑡2)𝑒ℎ𝜉+𝑎2ℎ2𝑡2𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡2 + 𝑎ℎ√𝑡2) −−2 𝑒( 𝜉2𝑎√𝑡2+𝑎ℎ√𝑡2)2𝑒ℎ𝜉+𝑎2ℎ2𝑡2𝑎√𝑡2√𝜋 ]   

 = 𝜕𝑓2𝜕ℎ

−𝑢0 [   
 (𝜉 + 2𝑎2𝑡3)𝑒ℎ𝜉+𝑎2ℎ2𝑡3𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡3 + 𝑎ℎ√𝑡3) −

−2 𝑒( 𝜉2𝑎√𝑡3+𝑎ℎ√𝑡3)2𝑒ℎ𝜉+𝑎2ℎ2𝑡3𝑎√𝑡3√𝜋 ]   
 = 𝜕𝑓3𝜕ℎ .

,  (250) 

 

 For the third physical parameter, which is the initial temperature in this case, we 

construct the following system: 

 

{  
  −[𝑒𝑟𝑓 ( 𝜉2𝑎√𝑡1) + 𝑒ℎ𝜉+𝑎2ℎ2𝑡1𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡1 + 𝑎ℎ√𝑡1)] = 𝜕𝑓1𝜕𝑢0 ,− [𝑒𝑟𝑓 ( 𝜉2𝑎√𝑡2) + 𝑒ℎ𝜉+𝑎2ℎ2𝑡2𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡2 + 𝑎ℎ√𝑡2)] = 𝜕𝑓2𝜕𝑢0 ,− [𝑒𝑟𝑓 ( 𝜉2𝑎√𝑡3) + 𝑒ℎ𝜉+𝑎2ℎ2𝑡3𝑒𝑟𝑓𝑐 ( 𝜉2𝑎√𝑡3 + 𝑎ℎ√𝑡3)] = 𝜕𝑓3𝜕𝑢0 .  (251) 

 

 After we have derived all necessary terms, we may conclude that (248) are the 

explicit analytical expressions for the physical parameter’s determination together with 
the above depicted notations and observations. 



96 
 

CONCLUSION 
 

 The presented PhD thesis was completed in the accordance to all necessary 

provisions and legislation standards. During the implementation of the conducted 

work, there were performed international research and pedagogical practices. All 

derivations and deductions were performed in cooperative advisory contacts with the 

local and research supervisors. General results approbations were described and 

published in [93 – 94]. 

 The posed problems in the current thesis were completed to the full extent and 

beyond, since we have demonstrated the general analytical inverse analysis 

methodology derived towards the multiphysical processes with layered structure and 

various formulations of the boundary conditions along with homogenized and non-

homogenized measurement samples. 

 Beside the achieved goal, the presented thesis results are the fruitful subject for 

the further fundamental investigations, since it presents and discusses principal 

epistemology that could be enriched further to extend the general formulation of the 

inverse problems theory in terms of the regularization, stability, and solution derivation 

issues.  

 We may also conclude that the constructed multiphysical mathematical and 

computer models present separate interest in terms of the derived analytical 

expressions, mentioned as the direct problems in our work. The expressions obtained 

by various approaches, including the integral transforms, functional constructions and 

proving the posed lemmas and theorems could be utilized further in sense of the 

technical engineering or theoretical investigations. 
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APPENDIX A 
 

Notes for the conjugate problem derived for the thermoelastic stress analysis inverse 

methodology analytical solution 

 

The conjugate model (A.1) – (A.4), deduced in the multilayered medium: 𝑥 ∈Ω: 

 𝜌𝑐 𝜕𝜓𝜕𝑡 + 𝜕𝜕𝑥 (𝜆𝑛 𝜕𝜓𝜕𝑥) = 0 .     (A.1) 

 (ℎ𝑜𝑢𝑡𝜓 − 𝜆𝑛 𝜕𝜓𝜕𝑥) |𝑥=0 = 2(𝑇 − 𝑇𝑔1(𝑡))|𝑥=0.  (A.2) 

 (ℎ𝑖𝑛𝑠𝜓 + 𝜆𝑛 𝜕𝜓𝜕𝑥) |𝑥=𝐿 = 2(𝑇 − 𝑇𝑔2(𝑡))|𝑥=𝐿.  (A.3) 

 𝜓|𝑡=𝑇𝑚 = 𝜓(𝑥, 𝑇𝑚) = 0.      (A.4) 

 

 Further we utilize the Laplace transform towards the above model: 

 ℒ [ 𝜆𝜌𝑐𝑝 𝜕2𝜓𝜕𝑥2] = 𝜆𝑛𝜌𝑐𝑝 [ 𝑝2�̃�(𝑝, 𝑡) − 𝑝𝜓(0, 𝑡) −− 2𝑝𝜆𝑛 (𝑢[0, 𝑡] − 𝑇𝑔1(𝑡)) − ℎ𝑖𝑛𝑠𝜓𝑝] = 0  (A.5) 

 

By applying the conjugate boundary conditions, we deduce that: 

 �̃�(𝑝, 𝑡) = 𝜌𝑐𝑝𝜓(0,𝑡)𝜆𝑛𝑝 − 2𝜌𝑐𝑝𝜆𝑛2𝑝 (𝑢[0, 𝑡] − 𝑇𝑔1(𝑡)) − 𝜌𝑐𝑝ℎ𝑖𝑛𝑠𝜓𝜆𝑛𝑝   (A.6) 

 

 While the inverse Laplace transform has the following form: 

 ℒ−1 {𝑐𝜓(0, 𝑡)𝜆𝑛𝑝 − 2𝜌𝑐𝑝𝜆𝑛2𝑝 (𝑢[0, 𝑡] − 𝑇𝑔1(𝑡)) − 𝜌𝑐𝑝ℎ𝑖𝑛𝑠𝜓𝜆𝑛𝑝 } = 

 = ℒ−1 {𝑐𝜓(0, 𝑡)𝜆𝑛𝑝 − 2𝜌𝑐𝑝𝜆𝑛2𝑝 (𝑢[0, 𝑡] − 𝑇𝑔1(𝑡)) − 𝑐ℎ𝑖𝑛𝑠𝜓𝜆𝑛𝑝 } = 

 = [𝑐𝜓(0,𝑡)𝜆𝑛 𝜃(𝑥) − 2𝑐𝜆𝑛2 (𝑢[0, 𝑡] − 𝑇𝑔1(𝑡))𝜃(𝑥) − 𝑐ℎ𝑖𝑛𝑠𝜓𝜆𝑛 𝜃(𝑥)] , 𝑥 ∈ Ω.  
(A.7) 

    

We have implemented the following properties of the Laplace transform: 
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{ℒ−1{𝑎𝑓(𝑠) + 𝑏𝑔(𝑠)} = 𝑎ℒ−1{𝑓(𝑠)} + 𝑏ℒ−1{𝑔(𝑠)},ℒ−1 {𝑐𝑠} = 𝑐𝜃(𝑡),ℒ−1{1} = 𝛿(𝑡).    (A.8) 

 

Here we have utilized the Heaviside step function and the Dirac delta function 

respectively:  

 

{ 𝜃(𝑥) = {0, 𝑥 < 0,1, 𝑥 ≥ 0. ,𝛿(𝑥) = lim𝑏→0 1|𝑏|√𝜋 𝑒−(𝑥𝑏)2 .    (A.9) 
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APPENDIX B 

The title page for the firstly mentioned article reprint 
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APPENDIX C 
 

The publication certificate of the MDPI editorial office for the second mentioned 

research paper 

 

 


