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NOTATIONS 
 
The following notations are used in this dissertation: 
 
 

ℳ  a  variety  of  algebras  defined  by  some  set  of  identities 
ℳ(")  a class of all algebras of the types +(") defined by {%, '} = %' + '% 
ℳ($)  a class of all algebras of the types +($) defined by [%, '] = %' − '% 
+(1)  a  free  nonassociative  algebra  generated by set 1 
234(1)  a  free  Zinbiel  algebra  generated  by  set  1 
"(1)  a  free  Tortkara  algebra  generated  by  set  1 
!"(1)  a  free  special  Tortkara  algebra  generated  by  set 1 
"%  n-th homogenous part of "(1) 

5 ⧢ 7  the  shuffle  product  of  5  and  7 
%&  is %'!⋯		%'"#!%'"  for : = 3( 		⋯		3%$(		3% 

%&;;; 
 is a skew-right-commutative element of the form 

 %'!⋯		%'"#!%'" −	%'!⋯		%'"#$%'"%'"#! for : = 3( 		⋯		3%$(		3% 
Id(+['])  the 3-th commutator ideal of + 
+>  is  spanned  by {57|5 ∈ +, 7 ∈ >} 
[+, >]  is  spanned  by {[5, 7]|5 ∈ +, 7 ∈ >} 
+ ∘ >  the ideal of + generated by [+, >].  

2+(+, B)  the  space  of  all  cocycles  C	 ∶ 		+		 × 		+		 ⟶ 		B 
>+(+, B)  the  space  of  all  coboundaries C	 ∶ 		+		 × 		+		 ⟶ 		B 
G+(+, B)  the  second  cohomology  space  defined  as 2+(+, B)/>+(+, B) 
A44(C)  the  annihilator  of C 
AJK(+)  the  automorphism  group  of  the  algebra + 
+,
'∗  j-th i-dimensional nilpotent non-pure assosymmetric algebra + with 

identity %'L = 0 
+,
'  j-th i-dimensional nilpotent pure assosymmetric algebra + without 

identity %'L = 0 
N'  i-dimensional  algebra  with  zero  product 
(+)',,  j-th i-dimensional  central  extension  of + 
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INTRODUCTION 
 
The presented dissertation is devoted to the special Tortkara algebras and 

nilpotency of assosymmetric algebras associated with Lie ideals and their algebraic 
classification in low dimensions. 

The class of Tortkara algebras is a new class of nonassociative algebras 
discovered by A. Dzhumadil’daev [1]. Nonassociative algebras play an important role 
in many areas of mathematics. It is known that nonassociative algebras, such as Lie 
and Jordan algebras, arose within the framework of physics and have been extensively 
developed due to their applications in this field of science. Therefore, the classical 
theory of nonassociative algebras is mainly based on the study of Lie and Jordan 
algebras. 

Let ℳ be a variety of algebras defined by some set of identities. We define 
ℳ(") and ℳ($) as the classes of all algebras of the types +(") and +($) defined by the 
anticommutator {%, '} = %' + '% and the commutator [%, '] = %' − '%, respectively 
on the same vector space of + ∈ ℳ for all %, ' ∈ +. These two products usually 
connect two different known varieties of algebras, sometimes leading to new 
interesting classes of algebras. A classic example of such an approach is the variety of 
associative algebras. Recently, there has been a wide interest in studying other new 
types of nonassociative algebras over the commutator and anticommutator, such as 
Novikov, assosymmetric, bicommutative, Leibniz, and other algebras [2 – 6]. 

The commutator and anticommutator algebras of an associative algebra are 
known to satisfy Jacobi and Jordan identities, respectively. According to the well-
known Poincare-Birkhoff-Witt (PBW) theorem, there are two independent identities, 
namely anticommutativity and Jacobi identities, which provide a complete list of 
identities for the commutator algebra of an associative algebra. This means that every 
identity satisfied by the commutator product in every associative algebra is a 
consequence of anticommutativity and Jacobi identities. However, the situation is 
different in the case of the anticommutator, as there is no embedding theorem. P. Cohn 
in [7] showed that a free special Jordan algebra with three generators has an exceptional 
homomorphic image. Consequently, there is no analogue of the PBW theorem for 
Jordan algebras. Also, it is known that the Glennie identity of degree eight exists, which 
is not a consequence of commutativity and Jordan identities. In this situation, many 
different interesting questions arise: studying the speciality of Jordan algebras, finding 
special identities, and others. In 1956 Shirshov proved that every Jordan algebra with 
two generators is special. This result gave further development of the theory of Jordan 
algebras. In this dissertation, we prove analogies of Cohn’s and Shirshov’s theorems 
for the free special Tortkara algebras. 

Another important question in this line of research is the search for criteria to 
determine whether an element of free algebra is a Lie or a Jordan element. Let +(1) 
be a free algebra on a set 1 of ℳ. An element of the algebra +(1)	is called a Lie 
element if it can be expressed by elements of X in terms of commutators. Similarly, an 
element of +(1) is called a Jordan element if it can be expressed by elements of 1 in 
terms of anticommutators. There are two well-known Lie criteria for free associative 
algebras: the Specht-Wever-Dynkin criterion [8, 9] and the Friedrich criterion [10]. 



 6 

Jordan elements in free associative algebra were described by P. Cohn [7, p. 259] only 
for the set of generators containing no more than three elements. He showed that an 
element is Jordan if and only if it is symmetric under the involution map. Using this 
criterion, some structural results concerning the theory of Jordan algebras were 
obtained. Based on Cohn’s result D. Robbins developed the study of Jordan elements 
in the free associative algebras [11]. But here, we give both Lie and Jordan criteria for 
elements in a free Zinbiel algebra. 

A. Dzhumadil’daev proved that Zinbiel algebra under commutator satisfies the 
anticommutativity and Tortkara identities [1, p. 3911]. M. Bremner in [12], using 
representation theory, studied special identities in terms of the triple product of 
Tortkara defined as [5, 7, P] = [[5, 7], P] in a free Zinbiel algebra and discovered 
identities in degrees five and seven in terms of the triple product. Recently, some 
geometric interpretations of Tortkara algebras have emerged in data science [13, 14]. 
The algebraic and geometric classifications of 5- and 6-dimensional Tortkara algebras 
were obtained in [15 – 17]. P. Kolesnikov in [18] shows that the class of all special 
Tortkara algebras does not form a variety. In the anticommutator case, he showed that 
there exists a homomorphic image of a free anticommutator algebra from a single 
generator, which is not embedded in the anticommutator algebra of the Zinbiel algebra. 
In addition, he asked a question about the maximum number of free generators for 
which all homomorphic images of a free special Tortkara algebra are special. The first 
part of the dissertation is devoted to the study of the above questions for Zinbiel and 
Tortkara algebras. 

The second approach in our investigation is determining the structure of a Lie-
admissible algebra when its related Lie algebra satisfies certain properties. Many of the 
properties of commutator subgroups had analogues in the theory of associative algebras 
in [19], with a suitable definition of “commutator ideals”. Jennings in [19, p. 341] 
extended the concepts of a “nilpotent group” and a “solvable group” to a ring. He 
proved that if + is an associative algebra over a field with characteristics not equal to 
2, if the associated Lie algebra is solvable, then + is solvable. Moreover, he obtained 
that if + is an associative algebra whose associated Lie algebra is nilpotent, then the 
ideal + ∘ + of + is generated by the set {57 − 75|5, 7 ∈ +} is nilpotent. In [20] 
established that if + is an associative algebra over a field Q whose associated Lie 
algebra is solvable, and if the characteristic of Q is neither 2 nor 3, then + ∘ + is nil. If 
the associated Lie algebra of the associative algebra + over a field of characteristic R >
0 is either nilpotent or solvable with R > 2, then the ideal + ∘ + is nil of bounded index 
[21]. Assosymmetric algebras are introduced by Kleinfeld which come close to being 
associative [22]. Assosymmetric algebras as associative algebras under commutator 
are Lie-admissible algebras [23]. Kleinfeld proved that an assosymmetric ring of 
characteristic different from 2 and 3, without ideals U ≠ 0, such that U+ = 0 is 
associative.  In addition, assosymmetric algebras were studied in [24 – 26]. The basis 
of free assosymmetric algebras was presented in [27]. Pokrass and Rodabaugh proved 
that each solvable assosymmetric ring of characteristics different from 2 and 3 is 
nilpotent [28]. We are continuing the investigation of Lie-admissible algebras such as 
assosymmetric algebras in terms of their associated Lie algebras. 
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The third considered problem is the classical problem in nonassociative algebra 
theory is to classify (up to isomorphism) the algebras of dimension 4 arising from a 
given variety described by a set of polynomial identities. It is common to concentrate 
on small dimensions, and there are two basic classification approaches: algebraic and 
geometric. These two methodologies have been used to study associative, Jordan, Lie, 
Leibniz, Zinbiel, and others, see [29 – 35] and references therein. We focus on the 
classification of the finite-dimensional nilpotent assosymmetric algebras. The key step 
of the method of algebraic classification of nilpotent assosymmetric algebras is the 
calculation of central extensions of small dimensional algebras. Firstly, Skjelbred and 
Sund devised a method for classifying nilpotent Lie algebras employing central 
extensions [36]. Moreover, the method was used to describe different varieties of 
nilpotent algebras of small dimensions such as the 4-dimensional nilpotent: associative 
algebras, Novikov algebras, bicommutative algebras, and Zinbiel algebras [32, p. 4, 37 
– 39], all the 5-dimensional nilpotent Jordan algebras [34, p. 216], all the 6-
dimensional nilpotent Lie algebras [33, p. 646], all the 6-dimensional nilpotent Malcev 
algebras [40] and some others. 

The goal of the research. The goal of this research is to continue the study of 
Zinbiel algebras and assosymmetric algebras with respect to commutators. 
Specifically, the research aims to study homomorphic images of free special Tortkara 
algebras using Lie elements in the free Zinbiel algebra and provide an answer to a 
question previously posed in [18, p. 70]. An analogy of the classical Cohn’s theorem 
in Jordan algebras for free special Tortkara algebras is also obtained. Furthermore, the 
research aims to generalize some properties of associative algebras to assosymmetric 
algebras related to Lie ideals. The final part of the research is devoted to the algebraic 
classification of nilpotent assosymmetric algebras, developing a unified algorithm 
using Wolfram Mathematica code to reduce the computational parts of the 
classification problem for finite dimensional nilpotent algebras and demonstrate it with 
a new classification of nilpotent assosymmetric algebras [41 – 43]. 

General methodology of the research. We use methods of structural and 
combinatorial theory of free Zinbiel and assosymmetric algebras. We study the basic 
methods of constructing central extensions of nonassociative algebras. We obtain the 
algebraic classification of small dimensional nilpotent assosymmetric algebras by the 
Skjelbred-Sund classification method [43, p. 154]. 

Scientific novelty. The main results of the first part of the dissertation are as 
follows: 

- The criteria for determining Lie and Jordan elements in a free Zinbiel algebra 
is obtained; 

- A basis for a free special Tortkara algebra is described; 
- An exceptional homomorphic image of a free special Tortkara algebra with 

three generators is constructed; 
- An analogue of Cohn’s theorem for a free special Tortkara algebra is proved. 

That is, the speciality of any homomorphic image of a free special Tortkara algebra 
with two generators is proved; 

- It was proved that there is no special identity with two generators. 
For every assosymmetric algebra + we form a series of ideals  
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 G(: = +, G'"(: = G' ∘ +			[\]			3 ≥ 1. 
 

It is said that + is of finite class if G% = (0) for some positive integer 4. For the 
minimal integer 4 such that G% = (0), we call 4 − 1 the class of + [19, p. 343]. 

The main results of the second part of the dissertation are as follows: 
- It was obtained that if + be an assosymmetric algebra of finite class, then + ∘ + 

is nilpotent of nilpotent index less or equal to the class of +; 
- It was proved that U`(+['])U`(+[,]) ⊆ U`(+['",$(]) if 3 or b is odd for every 

assosymmetric algebra +, where U`(+[']) is the commutator ideal of +; 
- The algebraic classification of nilpotent 4-dimensional assosymmetric algebras 

is obtained; 
- The algebraic classification of nilpotent 5- and 6-dimensional assosymmetric 

algebras with one generator is obtained. 
Theoretical and practical significance. The theoretical significance of this 

work lies in advancing the understanding of the structures of algebras and PI-theory. 
The results obtained in this research can be used to develop the theory of these 
structures further and to gain a deeper understanding of how they behave. Additionally, 
the findings can be applied to the study of finite dimensional assosymmetric algebras 
and free Tortkara and Zinbiel algebras. 

In terms of practical significance, the results of this research can be used in 
various fields that rely on the use of algebras, such as mathematics, physics, and 
computer science. The results can also be used to improve the methods used to classify 
algebras and to develop new algorithms for solving problems related to algebras. 

Publications. During the period of doctoral studies, 7 publications were 
published in international journals. Scopus and Thomson Reuters index these journals. 
The main results on the topic of the dissertation were published in the form of articles 
in peer-reviewed journals [41 – 44]. There are 3 articles that are not related to the topic 
of the dissertation [45 – 47]. Moreover, the authors of the published work [43] were 
awarded the Leader of Science Web of Science Award 2020 in the category of the most 
cited author from Kazakhstan by Clarivate Analytics. 

The results of this dissertation were reported at: 
- “Annual Scientific April Conference”, Institute of Mathematics and 

Mathematical Modeling (2022, Almaty, Kazakhstan); 
- the scientific seminar of the Institute of Mathematics named after V.I. 

Romanovsky (2021, Tashkent, Uzbekistan); 
- the scientific seminar of Astana IT University (2021, Nur-Sultan, Kazakhstan). 
- III International Workshop on “Non-Associative Algebras in Malaga”, 

University of Malaga (2020, Malaga, Spain); 
- the regular scientific seminar of the School of Mathematics and Cybernetics of 

the Kazakh-British Technical University (2019-2021, Almaty, Kazakhstan); 
- the algebraic seminar of the Faculty of Engineering and Natural Sciences of 

the Suleyman Demirel University (2019-2021, Kaskelen, Kazakhstan); 
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The structure and scope of the thesis. 
The dissertation consists of an introduction, three chapters, a conclusion, a list 

of references, and an appendix, for a total of 86 pages. 
In Chapter 1, the fundamental notions and properties of nonassociative algebras 

are defined and recalled. Additionally, known results about specific types of 
nonassociative algebras, such as Jordan, Zinbiel, Tortkara, and assosymmetric 
algebras, are presented. 

The next chapter is devoted to the study of free Zinbiel algebras over a 
commutator. The first section of this chapter is dedicated to obtaining the main lemmas, 
which are subsequently used to prove the main theorems of the chapter. 

Let 1 = {%(, %+, . . . } and 234(1) be a free Zinbiel algebra on 1. Define a linear 
map R: 234(1) → 234(1) on base elements as follows  

 
R(%') = −%' , 

 
Rd%'%,e = %,%' , 

 
R	d%'!%'$⋯%'% 	'Le = 	 %'!%'$⋯%'%L', f ≥ 1 

 
  where ', L ∈ 1. 

The first main result of this chapter is the following theorem, which gives us the 
Lie criterion for elements in a free Zinbiel algebra: 

Theorem 2.2.8 Let [ be a Zinbiel element of 234(1). Then [ is a Lie element if 
and only if R([) = −[.  

The next theorem demonstrates a base of free special Tortkara algebra: 
Theorem 2.2.9 The set of skew-right-commutative elements %&, where : ∈ g, 

forms base of !"(1). 
Moreover, we show that every identity with two generators is a consequence of 

anticommutativity and Tortkara identities: 
Theorem 2.4.2 The free Tortkara algebra "({%, '}) is special. 
The next theorem is an analogue of Cohn’s theorem on the speciality of 

homomorphic images of the free special Jordan algebras with two generators [7, p. 
261]. For a free special Tortkara algebra with three generators, we have an exceptional 
homomorphic image, we show this by constructing a counter-example. 

Theorem 2.5.1 Any homomorphic image of a free special Tortkara algebra with 
two generators is special. For the three generators case, this statement is not true: a 
homomorphic image of special Tortkara algebra with three generators might be non-
special. 

The results of Chapter 2 were published in [44]. 
The third chapter of this dissertation focuses on the study of assosymmetric 

algebras of finite class and commutator ideals of assosymmetric algebras. The main 
objective of the initial section is to examine the properties of assosymmetric algebras 
of finite class and demonstrate that they possess similar characteristics to associative 
algebras of finite class. The results obtained in this section can be used to further 
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develop the theory of assosymmetric algebras and gain a deeper understanding of how 
they behave. The last part of this chapter is devoted to the algebraic classification of 
nilpotent assosymmetric algebras, where a unified algorithm is developed using 
Wolfram Mathematica code to reduce the computational parts of the classification 
problem. 

We obtain an analogue of Jennings’ result from [19, p. 346] for assosymmetric 
algebras: 

Theorem 3.1.6 Let + be an assosymmetric algebra of finite class. Then + ∘ + is 
nilpotent of nilpotent index less than or equal to the class of +. 

We have a generalization of of Corollary 1.4 in [48] for associative algebras. 
Theorem 3.1.8 Let + be an assosymmetric algebra. Then we have the following 

U`(+['])U`(+[,]) ⊆ U`(+['",$(]) if 3 or b is odd. 
The results of this section were published in [49]. 
The final section of this chapter concentrates on the algebraic classification of 

finite dimensional nilpotent assosymmetric algebras. The section starts with an 
overview of the necessary background information to apply the well-known Skjelbred-
Sund classification method and the algorithms we follow in writing the code. We 
provide new results to illustrate our unified symbolic computational approach. 

Theorem 3.2.5 Let + be a nonzero 4-dimensional complex nilpotent 
assosymmetric algebra. Then, + is isomorphic to one of the algebras listed in Table 
A.1  in Appendix A. 

Regarding the 5 and 6-dimensional nilpotent assosymmetric algebras, applying 
the same algorithm we have the following theorem: 

Theorem 3.2.7 Let + be a 5- or 6-dimensional complex one-generated nilpotent 
assosymmetric algebra, then + is isomorphic to an algebra from Table A.3 or Table 
A.5 in Appendix A. 

The results of this section were published in [41 – 43]. 
 Acknowledgements. This work was done with financial support and a grant 
provided by the state.  
 I am especially grateful to my supervisor, Professor A.S. Dzhumadil’daev for 
his comprehensive support. I would like to express my sincere gratitude to Professor 
N.A. Ismailov, who had a great influence on my scientific interests and for his constant 
help in everything. I also want to express my gratitude to the co-authors with whom I 
wrote articles during my doctoral studies. Finally, I am very grateful to my family, 
especially my parents and wife. Their faith in me kept me cheerful and motivated dur-
ing my doctoral studies.  
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1  THEORETICAL FRAMEWORK 
   
This chapter presents the main notions, definitions, and theorems that we need 

in our theorems and in their proofs. In addition, in the last sections, we recall some 
known results in the theory of Jordan, Zinbiel, Tortkara and assosymmetric algebras. 
It is based on books [50 – 52]. 

 
1.1  Basic properties of algebras 
Let + be a vector space over a field h with given bilinear mapping (usually called 

multiplication) (%, ') → % ∘ '  on + × + → + such that   
 

(% + ') ∘ 	L = % ∘ 	L + ' ∘ L,	 
 

% ∘ (' + L) = % ∘ ' + % ∘ L, 
 

i(% ∘ ') = (i%) ∘ ' = % ∘ (i'), 
 

where for i ∈ h and for all %, ', L ∈ +. Then + is called an algebra over field h. The 
multiplication % ∘ ' is often abbreviated by %'. The dimension of the algebra	+ is its 
dimension as a vector space. The algebra + is finite-dimensional if + is a finite-dimen-
sional vector space. 

Let 1 be a set. The free nonassociative algebra h[1] over a field h from the set 
of generators 1 is defined by the following universal property: For any algebra A, any 
mapping 1 → + can be uniquely extended to the algebra homomorphism h[1] → +. 
The cardinality of the set X is called the rank of h[1]. We can construct the free algebra 
h[1], using a set j[1] of nonassociative words of the set X which is defined 
inductively:  

 
% ∈ j[1],				∀% ∈ 1, 

 
%(%+, %((l), (m)%+,  (l)(m) ∈ j[X] 

 
 for %(, %+ ∈ 1, l, m ∈ j[1]. No other sequences of the elements from 1 and brackets 
are not contained in j[1]. 

Let us define the multiplication on j[1] as  
 

%( ∘ %+ = %(%+, %( ∘ m = %((m), l ∘ %+ = (l)%+, m ∘ l = (m)(l). 
 

Now we consider h[1] to be a set of formal sums 
 

{p

,

:,m,|:, ∈ h,m, ∈ j[1]} 

 
and extend the operation of multiplication defined on j[1] to h[1] by the rule  
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(p

,

:,m,) ∘ (p

'

q'l') =p

,'

:,q'(m, ∘ l'), 

 
where :, , q' ∈ h and m, , l' ∈ j[1]. We obtain the free nonassociative algebra h[1] 
over a field h from the set of generators 1. The elements of h[1] are called 
nonassociative polynomials of (noncommutative) variables from the set 1. 

A monomial is a polynomial with only one term, which can be written in the 
form of :J, where : is a scalar from the field h, and J is a polynomial in the variables 
1. The degree of a monomial is the length of the word J. The degree of a polynomial 
is the highest degree of its monomials. A monomial :J is said to have a multi-degree 
(4(, … , 4/) if it contains %' exactly 4' times, 4/ ≠ 0, 4, ≠ 0; b > t. A homogeneous 
polynomial is a polynomial where all monomials have the same multi-degree. 

A homogeneous polynomial is called multilinear if it is linear in any of its 
variables (it is homogeneous of multidegree (1,1, … ,1)).  

The linearization of homogeneous polynomials is useful in the study of identities 
of algebras and in the study of varieties. The process of the linearization is described 
in detail e.g. in [51, p. 24]. 

Let + be an algebra over a field h with multiplication ∘. The multiplication % ∘ ' 
is often abbreviated by %'. A nonassociative polynomial [ = [(%(, %+, … %/) is called 
an identity of the algebra + if [(5(, 5+, … , 5/) = 0 for any 5' ∈ +, where 3 = 1,2, … , t. 
We say that + satisfies the identity [ or that the identity [ is valid in +. 

For example, an algebra + is commutative if it satisfies the identity %' = '% for 
all %, ' ∈ +. The algebra is called noncommutative if it is not commutative. 

An associative algebra is an algebra with identity  
 

(5, 7, P) = (57)P − 5(7P) = 0. 
 

An algebra is nonassociative if the above identity is not satisfied. 
An algebra is assosymmetric algebra if it is defined by the following identities: 
  

(%, ', L) = (%, L, '), 		 (%, ', L) = (', %, L),  
 

where (%, ', L) = (%')L − %('L). 
A nonassociative algebra with identity  
 
 5(7P) = (57)P + (75)P (1) 
 

 is called (right)-Zinbiel algebra. Such algebras are called dual of Leibniz or Zinbiel 
(read Leibniz in reverse order) algebras. Zinbiel algebras were introduced by J-
L.Loday in [53]. 

An algebra A is anticommutative if it satisfies the identity  
 
 %+ = 0 (2) 
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 for all % ∈ +. This implies that %' = −'%, and the converse holds in characteristic ≠
2. 

The Jacobian in an anticommutative algebra is defined by  
 

u(%, ', L) = (%')L + ('L)% + (L%)'. 
 

A Lie algebra v is an anticommutative algebra satisfying the Jacobi identity  
 

u(%, ', L) = 0, 
 

for all %, ', L ∈ v. 
Anticommuative algebra with "\]Kt5]5 identity  
 
 (57)(P7) = u(5, 7, P)7 (3) 
 

 is called  Tortkara algebra [1]. If the characteristic of the field is different from two, 
then the identity (3) has the following multilinear form  
 

 (57)(P`) + (5`)(P7) = u(5, 7, P)` + u(5, `, P)7. (4) 
 

An algebra u is called Jordan algebra, if it is a commutative algebra with the 
following identity  

 
 (%+, ', %) = 0 (5) 
 

 for all %, ' ∈ u [52]. 
A subalgebra > of an algebra + is a closed under multiplication: >> ⊂ > (i.e. 

for any 5, 7 ∈ > the product 57 belongs to >). A (two-sided) ideal U of an algebra + is 
a subalgebra closed under multiplication by +, i.e.  

 
+U + U+ ⊆ U. 

 
Ideals 0 and + of the algebra + are called improper ideals. The theory of nonassociative 
algebras defined two subsets of + which do behave associatively: The nucleus y(+) 
(or the associative center) of an algebra + is the set of elements L ∈ + which associate 
with every pair of elements 5, 7 ∈ + in the sense that (L, 5, 7) = (5, L, 7) = (5, 7, L) =

0 That is  
 

y(+) = {L ∈ +|(L, +, +) = (+, L, +) = (+, +, L) = 0}. 
 

The center 2(+) of an algebra + is the set of all elements L ∈ + which commute and 
associate with all elements in +. That is  
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2(+) = {L ∈ y(+)|[L, +] = 0}. 
 

Note that y(+) is an associative and 2(+) is a commutative and associative subalgebra 
of A. Moreover 2(+) ⊆ y(+). 

A homomorphism of algebras z: + → +0 is a homomorphism of vector spaces 
(i.e. a linear mapping) which saves multiplication,  

 
z(57) = z(5)z(7) 

 
for each 5, 7 ∈ +. 

The set  
 

j{](z) = {% ∈ +|z(%) = 0} 
 

is a kernel and a homomorphic image of + of the homomorphism z is the set  
 

Uf(z) = {z(%)|% ∈ +}. 
 

If z is injective homomorphism then we say that an algebra + is embedded in +0. A 
homomorphism of algebras which is bijective is called isomorphism (of algebras). An 
endomorphism is a homomorphism of algebras z: + → +. If U is an ideal of + then the 
mapping + → +/U, such that 5 → 5 + U, is called a natural (or canonical) 
homomorphism of algebras. 
 Theorem 1.1.1 (Fundamental theorem of homomorphism for algebras [50, 
p. 9]) Let +, +0 be algebras. Let U be an ideal of +, 54` z: + → +0 be a homomorphism 
of algebras and |: + → +/U the natural homomorphism. Then there is a unique 
homomorphism ℎ: +/U → +0, such that ℎ(5 + U) = ℎ(5). Furthermore, ℎ is an 
isomorphism if and only if z is a surjective homomorphism and j{](z) = U.  
 Theorem 1.1.2 (Isomorphism theorem [50, p. 10]) (3) If  z: + → > is a 
homomorphism of algebras over the field h, then 
 

 +/j{](z) ≅ Uf(z) ⊂ >. 
 

(33) If U( and U+ are ideals of the algebra + with U( ⊂ U+, then  
 

(+/U+)/(U(/U+) ≅ +/U(. 
 

(iii) If ! is a subalgebra of + and > is an ideal of +, then > ∩ ! is an ideal of ! and  
 

(> + !)/> ≅ !/(> ∩ !). 
 
An algebra + is called nilpotent if +1 = 0 for some f, where +' are defined by  
 

 +( = +, 
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+'"( = +'+ + +'$(++ +⋯+ +++'$( + ++' .  

 
An algebra + is called solvable if +(1) = 0 for some f, where +(') are defined 

by  
  

+(2) = +, +('"() = +(')+('), 3 > 0.  
 

 The minimal such f is called the index of nilpotency (index of solvability, 
respectively) of the algebra +. Clearly, any nilpotent algebra is solvable. The concepts 
of solvability and nilpotency are equivalent for associative algebras:  

 
+('"() = +(')+(') = ++

&
. 

 
1.2  Variety of algebras 
Let U be a set of polynomials from h[1]. Then the class of all algebras satisfying 

this set of identities U is called the variety of algebras over the field h defined by the 
set of identities U. A subvariety is a subset of a variety which is itself a variety. Algebras 
from the variety ℳ are called shortly ℳ - algebras. The variety consisting of only the 
zero algebra is called trivial. The variety is called homogeneous if, for every identity [ 
satisfied in the variety ℳ, all the homogeneous components of [ are also satisfied in 
ℳ.  

Proposition 1.2.1 [51, p. 17] Every variety of algebras over an infinite field is 
homogeneous. 

Proposition 1.2.2 ([51 p. 25])  Over a field of characteristic zero any 
homogeneous identity is equivalent to a multilinear identity.  

Proposition 1.2.3 ([54], see also [55, p. 181]) Over a field of characteristic zero 
any variety can be defined by multilinear identities.  

Example 1.2.4 The variety of associative algebras ÄÅÅ\P is defined by one 
identity  

 
[(%(, %+, %3) = (%(%+)%3 − %((%+%3). 

 
Example 1.2.5 The variety of assosymmetric algebras ÄÅÅ\Å'f is defined by 

the identities  
 

[((%(, %+, %3) = (%(, %+, %3) − (%(, %3, %(), 
 

[+(%(, %+, %3) = (%(, %+, %3) − (%+, %(, %3). 
 
Example 1.2.6 The variety of Zinbiel algebras Ç347 is defined by the identity  
 

[(%(, %+, %3) = %((%+%3) − (%(%+)%3 − (%+%()%3. 
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Let us denote by 
 

 ℳ(!) = {+| an algebra A satisfies all the identities from !}  
 

the variety of algebras defined by the set ! ⊂ h[1]. Notice that ℳ(!) = ℳ(3`〈!〉), 
where 3`〈!〉 denotes the ideal generated by j. Similarly, denote 

 
U(+) = {[ ∈ h[1]| [ = 0 for all 5 ∈ +} 

 
the set of all the identities that are satisfied in +, and  
 

U(ℳ) =∩ {U(+)|+ ∈ ℳ}. 
 

Any variety of algebras is closed under homomorphisms, subalgebras, and direct 
products by results in [55, 56]. And to decide whether a class of algebras forms a 
variety is used following Birkhoff’s (or HSP) theorem. 

Theorem 1.2.7 (Birkhoff theorem [55, p. 172]) A class of algebras Ö form a 
variety if and only if Ö is closed under Homomorphisms, Subalgebras and direct 
Products (HSP).  

The algebra h[1] is called a ℳ-free (relatively free or free in the variety ℳ) 
with the set of generators X, if for any algebra > ∈ ℳ every mapping  

 
Ü: 1 → > ∈ ℳ 

 
can be uniquely extended to a homomorphism of the algebras  
 

Üℳ: h[1] → >. 
 

The ℳ-free algebra is not free in general but only in the variety ℳ, i.e. it satisfies 
identities (and their consequences) that define the variety ℳ. The construction of the 
ℳ-free algebra is explained by the following theorem: 

Theorem 1.2.8 [51, p. 13] Let ℳ be a nontrivial variety with the system of 
defining identities I. Then for any set 1 the natural homomorphism h[1] → h[1]/U(B) 
is injective and the quotient algebra is free in the variety V with the free set of 
generators 1. Any two free algebras in ℳ with equivalent sets of free generators are 
isomorphic.  

The commutator in algebra + is the bilinear function  
 
 [%, '] = %' − '%. 
 

The minus algebra +($) of algebra + is the algebra with the same underlying vector 
space as + but with the multiplication [%, ']. 

The Jordan product (or anticommutator) in algebra + is the bilinear function  
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 {%, '} = %' + '%. 
 

The plus algebra +(") of algebra + over a field h is the algebra with the same 
underlying vector space as + but with {%, '} as the multiplication. 

 
1.3  Special Jordan algebras 
The theory of associative algebras and Jordan algebras is particularly important 

in the study of algebra. Let ÄÅÅ\P be a variety of associative algebras. Let ÄÅÅ\P(") 
class of algebras of types +("). Well known, that any algebra in ÄÅÅ\P(") satisfies the 
Jordan identity (5). Jordan algebra u is special if it is isomorphic to a subalgebra of the 
algebra +(") for some associative algebra +. Otherwise, it is exceptional. 

The study of free algebras is very important. Here we shall need two of them: 
the  free (unital) associative algebra h+{%(, … , %%} and the free (unital) special Jordan 
algebra !u({%(, … , %%}), which is the Jordan subalgebra of h+({%(, … , %%}) generated 
by {%(, … , %%} and 1. 

A fundamental result in the theory of free special Jordan algebras is Proposition 
1.3.1, also known as the universal property of free special Jordan algebras. 

Proposition 1.3.1 (The universal property of Free special Jordan algebras 
[51,  p. 76]) Let + be a special Jordan algebra with a unit 1. If '(, … , '% ∈ + there is 
a unique homomorphism Ü: !u({%(, … , %%}) → + such that Ü(1) = 1 and Ü(%') =
'' , [\]	3 = 1,… , 4.  

Let 1 = {%(, %+, … } be a set and h+(1) be a free associative algebra generated 
by 1. A polynomial in h+(1) is called Jordan element of h+(1) if it can be expressed 
by elements of 1 in terms of anticommutators. There is still no criterion that determines 
all Jordan elements in h+(1). This problem is solved only for some subspaces of the 
space of all Jordan elements. 

Lemma 1.3.2 (P. Cohn [7, p. 255]) Let : be an ideal of free special Jordan 
algebra !u(1) and {:} is an ideal of free special associative algebras generated by the 
set :. Then !u(1)/: is a special Jordan algebra if and only if {:} ∩ !u(1) ⊆ :.  

Let us define in h+(1) the involution ]{l(⋅) by  
 

]{l(%(%+… 	%%) = %%…%+%(, 
 

and the element J in h+(1) is called reversible if ]{l(J) = J. The J = {%(…%%} =

%(…%% + %%…%( is called a reversible element. 
Theorem 1.3.3 (P. Cohn [7, p. 257]) Every reversible element of h+(1) can be 

expressed as a Jordan polynomial in generators %(, %+, … %% and the elements  
 
 {%'!%'$%''%'(} 
 

where 3( < 3+ < 33 < 35 and 3 = 1,2, ….  
The expression {%'!%'$%''%'(} is called a tetrad. 
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Corollary 1.3.4 (P. Cohn [7, p. 259])  If the number of generators is less than 
four then the free special Jordan algebra !u({%(, %+, … %%}) coincide with the space of 
reversible elements in h+({%(, %+, … %%}).  

Theorem 1.3.5 (P. Cohn [7, p. 262])  Let !u({%(, %+, %3}) is free special Jordan 
algebra generated by %(, %+, %3 and : be the ideal in !u({%(, %+, %3}) generated by 
element t = %+ − '+. Then !u({%(, %+, %3})/: is exceptional.  

 
1.4  Zinbiel algebras 
In some papers Zinbiel algebras are called dual Leibniz, chronological or pre-

commutative algebras [18, p. 145], [57 – 59]. 
Let 1 = {%(, %+, … } be a set. Let 234(1) be the free Zinbiel algebra generated 

on 1. For 5(, … , 5% ∈ 234(1) denote by 5(5+⋯5% a left-bracketed element (⋯ (5( ∘

5+)⋯ ) ∘ 5%. In [53, p. 190] it was proved that the following set of elements  
 

B(1) =∪% {%'!%'$⋯%'"|%(, … %'" ∈ 1} 
 

forms a base of the free Zinbiel algebra 234(1). 
Now we present some results from [60], about the Zinbiel algebras. Recall that 

an algebra + is Zinbiel, if for any %, ', L ∈ + relations (1) are satisfied. 
Theorem 1.4.1 [60, p. 197] Let j be an algebraically closed field of 

characteristic R ≤ 0. Then every finite-dimensional Zinbiel algebra is solvable.  
The next theorem gives information about solvable Zinbiel algebras. 
Theorem 1.4.2 [60, p. 197] Let j be a field of characteristic R ≤ 0 and + be a 

solvable Zinbiel algebra with solvability length y. If R = 0 or R > 26 − 1, then + is a 
nil-algebra with nil-index no greater than 26. Conversely, if + is a Zinbiel nil-algebra 
with nil-index y and if R = 0 or R > y − 1, then + is solvable with solvability length 
y.  

Theorem 1.4.3 [60, p. 197] Let j be a field of characteristic R ≤ 0. Every 
Zinbiel nil-algebra is nilpotent. If + is a nil-algebra with nil-index 4, then the 
nilpotency index of + is no greater than 2% − 1.  

Corollary 1.4.4 [60, p. 197] Every finite-dimensional, simple Zinbiel algebra 
over an algebraically closed field of characteristic R ≤ 0 is isomorphic to the 1 −
`3f{4Å3\45ã algebra with trivial multiplication.  

Corollary 1.4.5 [60, p. 197] Every finite-dimensional Zinbiel algebra over the 
field of complex numbers is nilpotent (and, hence solvable and nil). If R > 0, then every 
finite-dimensional Zinbiel algebra over an algebraically closed field of dimension less 
than ã\å+(R + 1) and characteristic R is nilpotent (and hence solvable and nil).  

Let  
 

2(+) = {L ∈ +|5 ∘ L = L ∘ 5 = 0, ∀5 ∈ +} 
 

be the center of +. 
Corollary 1.4.6 [60, p. 197] Let + be a finite-dimensional Zinbiel algebra over 

the field of complex numbers of dimension 4. Then there exists y < 4 such that the 



 19 

product of any y elements of + in any type of bracketing is equal to 0. Moreover, + 
has the nontrivial center 2(+) ≠ 0. The same is true for any finite-dimensional Zinbiel 
algebra + over a field of characteristic R > 0 if 4 = `3f+ < ã\å+(R + 1).  

 
Let 23473{ã be a variety of Zinbiel algebras. Define 23473{ã(") and 23473{ã($) 

as classes of algebras of types +(") and +($) defined on the space + ∈ 23473{ã by  anti-
commutator {%, '} = % ∘ ' + ' ∘ % and  commutator [%, '] = % ∘ ' − ' ∘ %, 
respectively. Any algebra in 23473{ã(") is commutative and associative [53, p. 191]. It 
was proved in [1] that any algebra in 23473{ã($) satisfies the "\]Kt5]5 identity  

 
[[5, 7], [P, `]] + [[5, `], [P, 7]] = [u(5, 7, P), `] + [u(5, `, P), 7] 

 
where u(5, 7, P) = [[5, 7], P] + [[7, P], 5] + [[P, 5], 7] is the Jacobi of elements 5, 7, P. 
A  Tortkara algebra is defined as anticommutative algebra that satisfies Tortkara 
identity. 

Theorem 1.4.7 [1, p. 3911]  For any Zinbiel algebra (+,∘), its Lie algebra 
(+, [, ]), where [5, 7] = 5 ∘ 7 − 7 ∘ 5, satisfies the identity Tortkara. Any identity of 
degree 3 of the category 23473{ã($() follows from the anticommutative identity. Any 
identity of degree 4 for the category 23473{ã($() follows from the identities 
anticommutativity and Tortkara.  

In [1] obtained that the algebra + = (ç[%],⋆), where  
 

5 ⋆ 7 = 7è

7

2
(è

7

2
5	`%)`% 

 
is not Zinbiel algebra, but the corresponding algebra under a commutator satisfies the 
Tortkara identity. 

Theorem 1.4.8 [1, p. 3911] The algebra + = (ç[%],⋆) satisfies the right-
symmetry identity  

 
(%(%+)%3 − (%(%3)%+ = 0 

 
and the identity of degree four  
 

(%(, %+, [%3, %5]) + (%(, %3, [%5, %+]) + (%(, %5, [%+, %3]) = 0, 
 

where (%(, %+, %3) = (%(%+)%3 − %((%+%3). Then, its minus algebra +($() satisfies the 
Tortkara identity.  

An identity is called special if it holds in any homomorphic image of a special 
Tortkara algebra but does not hold in all Tortkara algebras. We still do not know 
whether there exists a special identity. 

P. Kolesnikov proved that the classes neither 23473{ã(") nor 23473{ã($) are 
closed under the operation of taking homomorphic images and are therefore not variety 
[18, p. 153-154]. In the commutator case, P.S Kolesnikov constructed an example of 
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special Tortkara algebra on four generators which can not be embedded into the 
commutator algebra of a Zinbiel algebra. 

Theorem 1.4.9 [18, p. 153] The algebra 234($)({%(, %+, %3, %5}) has an 
exceptional homomorphic image.  

Corollary 1.4.10 [18, p. 153] The class of all special Tortkara algebras is not 
variety.  

In the anti-commutator case, he showed that there is a homomorphic image of a 
free anti-commutator algebra on one generator that is not embedded into the anti-
commutator algebra of a Zinbiel algebra. 

Theorem 1.4.11 [18, p. 154] The algebra 234(")({%(}) has an exceptional 
homomorphic image.  

 
1.5  Assosymmetric algebras 
In this section, we present some results about assosymmetric algebras. 

Assosymmetric algebras are a type of nonassociative algebra that are of interest in the 
study of identities of algebras and varieties. 

Theorem 1.5.1 (E. Kleinfeld [22, p. 983]) If + is an assosymmetric algebra 
without ideals U ≠ 0, such that U+ = 0, then + is associative, provided the 
characteristic of + is different from 2 and 3.  

Let +(1) be a free assosymmetric algebra on 1. Denote by [%'!%'$⋯%'"] or 
%'!%'$⋯%'"  a left-normed element (⋯ (%'!%'$)%''⋯)%'"  for %'! , … , %'" ∈ 1. The 
element  

 
〈%'!⋯%'" , ''!⋯''%〉 = 

 
%'!(%'$(⋯ (%'"[… [(''! , ''$ , '''), ''(]⋯ , ''%]⋯ )) 

 
is called ordered expression, where %'! , … %'" , ''! , … , ''% ∈ 1 and we have order %'! ≤
%'$ ≤ ⋯ ≤ %'"  and ''! ≤ ''$ ≤ ⋯ ≤ ''% . In addition, it is known that the set of left-
normed and ordered expression elements forms a basis for the free assosymmetric 
algebra +(1) over a field of characteristic ≠ 2,3. This was shown in [27,  p. 312], 
where a multiplication rule of the base elements was also given. These multiplication 
rules are summarized in Proposition 1.5.2, which includes equations (6) - (8) and (9). 

Proposition 1.5.2 [27, p. 312]  
 
 〈J(, l(〉〈J(, l(〉 = 0, (6) 

  
 [%]〈J, l〉 = 〈%J, l〉, (7) 

  
 〈J, l〉[%] = ∑787!7$ 〈%(J, %+l〉, (8) 
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 [%]['] = [%'] − ∑787!7$
|7$|:(
;8;!;$
|;$|:+

(|'+ − 1|)〈%('(, %+'+〉. (9) 

  
Furthermore, in [28, p. 32], it was proved that each solvable assosymmetric 

algebra of characteristic different from 2 and 3 is nilpotent.  
Theorem 1.5.3 (D. Pokrass and D. Rodabaugh [28, p. 32]) Let A be a solvable 

assosymmetric ring of characteristic ≠ 2,3. Then A is nilpotent.  
This result, stated in Theorem 1.5.3 by D. Pokrass and D. Rodabaugh, gives us 

the motivation to classify low-dimensional nilpotent assosymmetric algebras over a 
field of characteristic 0. To accomplish this task, we will first analyze the properties of 
homogeneous polynomials in assosymmetric algebras and employ the Skjelbred and 
Sund method to classify them. 
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2  SPECIAL TORTKARA ALGEBRAS 
 

In this chapter, we consider Zinbiel algebras under commutators and 
anticommutators. We give criteria for Lie and Jordan elements in a free Zinbiel algebra 
and by using criteria we obtain the main results of this chapter. All results of this chap-
ter is published in [44]. 

 
2.1 Definitions and notations 
We recall definition of a linear map R: 234(1) → 234(1) on base elements as 

follows  
 

R(%') = −%' , 
 

Rd%'%,e = %,%' , 
 

R	d%'!%'$⋯%'% 	'Le = 	 %'!%'$⋯%'%L', f ≥ 1 
 

  where ', L ∈ 1. 
For 5 ∈ 234(1)\1 set  
 

5; ≔ 5 − R(5). 
 
Since R+ = 3`, it is clear that 
 

R(5;) = −5;. 
 

Let 4 > 1 be an integer and let Γ be set of sequences : = 3(⋯3%$(3% such that 3%$( <
3%. For : = 3(… 3%$(3% ∈ Γ set  
 

%& 	= 	 %'!⋯%'"#! 	%'" . 
 

We call elements of the form %&, where : ∈ Γ,  skew-right-commutative or shortly  
skew-rcom elements of 234(1). 

For instance, for %, ', L, K ∈ 1, we have 
 

(%')(LK);;;;;;;;;;; = (%')(LK) − R	d(%')(LK)e =	 
 

d(%')LeK	 + 	dL	(%')eK − R	 îd(%')LeK	 + 	dL	(%')eKï = 
 

%'LK	 + 	L%'K	 + 	%L'K − R	(%'LK	 + 	L%'K	 + 	%L'K) = 
 

%'LK	 + 	L%'K	 + 	%L'K − %'KL − L%K' − %LK' = 
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%'LK;;;;;; + L%'K;;;;;; + %L'K;;;;;;, 
 

%3(+5;;;;;;; = %3%(%+%5 − %3%(%5%+.	 
 
Recall the definition of the Lie element. We say that for m in a free Zinbiel 

algebra 234(1)  is Lie element if it can be shown as a linear combination of words on 
X under the product [5, 7] = 57 − 75. Similarly, an element m ∈ 234(1) is referred to 
as a Jordan element if it can be expressed as a linear combination of words on X using 
the product {5, 7} = 57 + 75.  Next, we define !"(1) as a free special Tortkara 
algebra on 1 under the commutator, i.e., subalgebra of 234(1)($) = (234(1), [		, ]) 
generated by 1. Furthermore, u(1) is defined as a subalgebra of the 234(1)(") =
(234(1), {		, }) generated by 1. 

Define  Dynkin map ñ: 234(1) → 234(1) on base elements as follows  
 

ñ: %'!%'$ 	⋯ %'" ↦	 {{⋯ ò%'! , %'$ô,⋯ }, %'"}. 
 

2.2 Lie elements in a free Zinbiel algebra 
 In this section, we give Lie criterion for elements in a free Zinbiel algebra. 
 

2.2.1  Shuffle permutations 
Let !ℎ1,% be set of shuffle permutations, i.e.,  
 
!ℎ1,% = {ö ∈ !%"1|ö(1) < ⋯ < ö(f), ö(f + 1) < ⋯ö(f + 4)	}. 

 
For any positive of integers 3(, … , 31 and b(, … , b% denote by !ℎ(3(… 31; b(… b%) set of 
sequences : = :(…:%"1 constructed by shuffle permutations ö ∈ !ℎ1,% by 
changing :<(=) to 3= if ã ≤ f and to b=$1 if f < ã ≤ f + 4. 

For example, 
 

!ℎ(12; 34) = {1234,1324,3124,1342,3142,3412}, 
	

!ℎ(23; 41) = {2341,2431,4231,2413,4213,4123}.	

 
The following proposition, which was established in [53] for free left-Zinbiel 

algebras, can also be derived for free right-Zinbiel algebras..  
Proposition 2.2.1. (Loday [53, p. 192]) 
 
î%'!⋯%')ï ∘ î%,!⋯%'*ï = p %<(()⋯	%<(>"?$()%,*

<∈	BCD'!…');	,!…	,*#!G

. 

 
Proof. The validity of the formula can be established through induction on n = 

p + q and the use of identity (1).  
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The shuffle product of two base elements J = %'!⋯%')  and l = %')+!⋯%')+*  
in the free Zinbiel algebra 234(1) is defined as follows:  

 
J	 ⧢ 	l = p %<(()⋯	%<(>"?)

<∈BCD'!…');')+!…')+*G

. 

 
Proposition 2.2.2  The shuffle product on 234(1) has the following properties: 

a)  the shuffle product is commutative and associative 
 

5	 ⧢ 	7 = 7	 ⧢ 	5, (5	 ⧢ 	7) 	⧢ 	P = 5	 ⧢	(7	 ⧢ 	P), for any 5, 7, P ∈ 234(1). 
 

b) 	î%'!⋯%')ï ∘ 	î%,!⋯%,*ï = õ
%'!⋯%')%,! , [\]	ú = 1

(%'!⋯%') ⧢ %,!⋯%,*#!)%,* , [\]	ú > 1	
		 

 
c) î%'!⋯%')ï ⧢ î%,!⋯%,*ï =

ù

%'!%,! + %,!%'! , [\]	R = ú = 1,

(%'! ⧢ %,!⋯%,*#!) ∘ %,* + %,!⋯%,*%'! , [\]	R = 1, ú > 1,

(%'!⋯%')#! ⧢ %,!⋯%,*) ∘ %,) + (%'!⋯%') ⧢ %,!⋯%,*#!) ∘ %,* , [\]	R, ú > 1

 

 
For example,  
 

(57) ∘ 	 (P`) = (57P + 5P7 + P57)` = (57	 ⧢ 	P) ∘ `, 
 

(57) ⧢ (P`) = 57P` + 5P7` + P57` + 5P`7 + P5`7 + P`57 = 
 
(57P + 5P7 + P57)` + (5P` + P5` + P`5)7 = (57 ⧢ P)` + (5 ⧢ P`)7. 
 
Proof. All these properties follow Proposition 2.2.1 and the definition of the 

shuffle product.  
 

2.2.2  Products of skew-right-commutative elements 
 In the following lemma, we define the product of skew-right-commutative ele-
ments in the Zinbiel algebra. 

Lemma 2.2.3  Zinbiel product of skew-right-commutative elements can be 
presented as follows  
  

%'!⋯%'% ∘ %,!%,$ = %'!⋯%'%%,!%,$ − %'!⋯%'%#$%'%%'%#!%,!%,$ + 
 

d%'!⋯%'%#! 	⧢ 	%,!e%'%%,$ − d%'!⋯%'%#$%'% 	⧢ 	%,!e%'%#!%,$ − 
 

d%'!⋯%'%#! 	⧢ 	%,$e%'%%,! − d%'!⋯%'%#$%'% 	⧢ 	%,$e%'%#!%,! , 
 



 25 

and for f ≥ 2, 4 ≥ 3 
 

%'!⋯%'% ∘ %,!⋯%," = 
 

(%'!⋯%'% 	⧢ 	%,!⋯%,"#$)%,"#!%," − %'!⋯%'%#$%'%%'%#! 	⧢ 	%,!⋯%,"#$)	%,"#!%," + 
 
(%'!⋯%'%#! 	⧢ 	%,!⋯%,"#!)%'%%," − (%'!⋯%'%#$%'% 	⧢ 	%,!⋯%,"#!)%'%#!%," − 

 
(%'!⋯%'%#! ⧢ %,!⋯%,"#$%,")%'%%,"#! − 

 
	(%'!⋯%'%#$%'% ⧢ 	%,!⋯%,"#$%,")%,%#!%,"#! . 

 
Proof.  Let us prove the first part of the lemma, 

 
%'!⋯%'% ∘ %,!%,$ = %'!⋯%'% ∘ 	%,!%,$ − %'!⋯%'%#$%'%%'%#! ∘ %,!%,$ − 

 
%'!⋯%'% ∘ 	%,$%,! − %'!⋯%'%#$%'%%'%#! ∘ %,$%,! = 

 
(by part  b of Proposition 2.2.2)  

(%'!⋯%'% ⧢	%,!)%,$ − (%'!⋯%'%#$%'%%'%#! ⧢	%,!)%,$ − 
 

(%'!⋯%'% ⧢	%,$)%,! + (%'!⋯%'%#$%'%%'%#! ⧢	%,$)%,! = 
 
(by the definitions of shuffle product and skew-rcom elements)  
 

%'!⋯%'%%,!%,$ − %'!⋯%'%#$%'%%'%#!%,!%,$ + 
 

d%'!⋯%'%#! 	⧢ 	%,!e%'%%,$ − d%'!⋯%'%#$%'% 	⧢ 	%,!e%'%#!%,$ − 
 

d%'!⋯%'%#! 	⧢ 	%,$e%'%%,! − d%'!⋯%'%#$%'% 	⧢ 	%,$e%'%#!%,! . 
 
Let 		4 ≥ 3, 
 

%'!⋯%'% ∘ %,!⋯%," = 
 

%'!⋯%'% ∘ %,!⋯%," − %'!⋯%'%#$%'%%'%#! ∘ %,!⋯%," − 
 
%'!⋯%'% ∘ %,!⋯%,"#$%,"%,"#! + %'!⋯%'%#$%'%%'%#! ∘ %,!⋯%,"#$%,"%,"#! = 
 

(by part  b of Proposition 2.2.2)  
 

(%'!⋯%'% 	⧢ 	%,!⋯%,"#!)%," − (%'!⋯%'%#$%'%%'%#! ⧢ 	%,!⋯%,"#!)%," − 
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(%'!⋯%'% ⧢ 	%,!⋯%,"#$%,")%,"#! + (%'!⋯%'%#$%'%%'%#! ⧢ 	%,!⋯%,"#$%,")%,"#! = 

 
(by part  c of Proposition 2.2.2)  
 

(%'!⋯%'%#! ⧢ 	%,!⋯%,"#!)%'%%," − (%'!⋯%'% ⧢ 	%,!⋯%,"#$)%,"#!%," − 
 
(%'!⋯%'% ⧢ %,!⋯%,"#!)%'%#!%," − (%'!⋯%'%#$%'%%'%#! ⧢ 	%,!⋯%,"#$)%,"#!%," − 

 
(%'!⋯%'%#! ⧢ 	%,!⋯%,"#$%,")%'%%,"#! − (%'!⋯%'% ⧢ 	%,!⋯%,"#$)%,"%,"#! − 

 
(%'!⋯%'%#$%'% ⧢ 	%,!⋯%,"#$%,")%'%#!%,"#! − 

 
(%'!⋯%'%%'%#! ⧢ 	%,!⋯%,"#$)%,"%,"#! = 

 
(by definition of skew-right-commutative elements we obtain) 
 
(%'!⋯%'% 	⧢ 	%,!⋯%,"#$)%,"#!%," − %'!⋯%'%#$%'%%'%#! 	⧢ 	%,!⋯%,"#$)	%,"#!%," + 
 
(%'!⋯%'%#! 	⧢ 	%,!⋯%,"#!)%'%%," − (%'!⋯%'%#$%'% 	⧢ 	%,!⋯%,"#!)%,%#!%," − 

 
(%'!⋯%'%#! ⧢ 	%,!⋯%'"#$%,")%'%%,"#! − 

 
(%'!⋯%'%#$%'% ⧢ %,!⋯%,"#$%,")%,%#!%,"#! . 

 
This completes the proof. 

In the next lemma we show that the commutator product of skew-rcom element 
by generator is a linear combination of skew-rcom elements. 

Lemma 2.2.4  
û%'!⋯%'%#!%'% , %,!ü = 

 

†

%'!%,! 		[\]	f = 1,

%'!%'$%,! − %'$%'!%,! − %,!%'$%'! 			[\]	f = 2,

%'!⋯%'%%,! − %'!⋯%'%#$%'%%'%#!%,! − d%,! ⧢ %'!⋯%'%#$e%'%#!%'% 			[\]	f > 2.

 

 
Proof. Since, [%'! , %,!] = %'!%,! − %,!%'! = %'!%,! , we start proof of lemma from 

f = 2, 
 

û%'!%'$ , %,!ü = %'!%'$ ∘ %,! −	%,! ∘ %'!%'$ = 
 

d%'!%'$e ∘ %,! − d%'$%'!e ∘ %,! − %,! ∘ d%'!%'$e + %,! ∘ d%'$%'!e= 
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%'!%'$%,! − %'$%'!%,! − %,!%'$%'! . 

 
Now suppose f > 2. Then 

 
û%'!⋯%'%#!%'% , %,!ü = %'!⋯%'%#!%'% ∘ %,! − %,! ∘ %'!⋯%'%#!%'% = 

 
(%'!⋯%'%#!%'%) ∘ %,! − (%'!⋯%'%%'%#!) ∘ %,! − 

 
%,! ∘ (%'!⋯%'%#!%'%) + %,! ∘ (%'!⋯%'%%'%#!) = 

 
(by part  b of Proposition 2.2.2)  

 
%'!⋯%'%#!%'%%,! − %'!⋯%'%%'%#!%,! − 

 
(%,! ⧢	%'!⋯%'%#!)%'% + (%,! ⧢ 	%'!⋯%'%)%'%#! = 

 
(by part  c of Proposition 2.2.2)  

 
%'!⋯%'%#!%'%%,! − %'!⋯%'%%'%#!%,! − 

 
	%'!⋯%'%#!%,!%'% + (%,! ⧢ 	%'!⋯%'%#$)%'%#!%'% + 

 
	%'!⋯%'%#$%'%%,!%'%#! + (%,! ⧢ 	%'!⋯%'%#$)%'%%'%#! = 

 
(by the definition of skew-right-commutative elements we obtain) 
 

%'!⋯%'%%,! − %'!⋯%'%#$%'%%'%#!%,! − d%,! ⧢ %'!⋯%'%#$e%'%#!%'% . 
 

This completes the proof. 
Lemma 2.2.5  The commutator of skew-right-commutative elements is a linear 

combination of skew-right-commutative elements.  
Proof. If skew-right-commutative elements have degree 2, then a 

straightforward calculation shows that  
 

û%'!%'$ , %,!%,$ü = %'!%'$%,!%,$ − %,!%,$%'!%'$ + 
  

(%'! ⧢ 	%,!)%'$%,$ − (%'! ⧢ 	%,$)%'$%,! + (%'$ ⧢ 	%,$)%'!%,! − (%'$ ⧢ 	%,!)%'!%,$ . 
 

The proof of the assertion is presented below under the assumption that the degree of 
skew-right commutative elements is at least 3. The case when one of the elements has 
degree 2 is established using similar way. So, 
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û%'!⋯%'% , %,!⋯%,"ü = %'!⋯%'% ∘ %,!⋯%," − %,!⋯%," ∘ %'!⋯%'% = 

 
(by Lemma 2.2.3)  

 
(%'!⋯%'% 	⧢ 	%,!⋯%,"#$)%,"#!%," − %'!⋯%'%#$%'%%'%#! 	⧢ 	%,!⋯%,"#$)	%,"#!%," + 
 
(%'!⋯%'%#! 	⧢ 	%,!⋯%,"#!)%'%%," − (%'!⋯%'%#$%'% 	⧢ 	%,!⋯%,"#!)%'%#!%," − 

 
(%'!⋯%'%#! ⧢ %,!⋯%,"#$%,")%'%%,"#! − 

 
(%'!⋯%'%#$%'% ⧢ 	%,!⋯%,"#$%,")%,%#!%,"#! − 

 
(%,!⋯%," 	⧢ 	%'!⋯%'%#$)%'%#!%'" − %'!⋯%,"#$%,"%,"#! 	⧢ 	%'!⋯%'%#$)	%'%#!%'% + 
 
(%,!⋯%,"#! 	⧢ 	%'!⋯%'%#!)%,"%'% − (%,!⋯%,"#$%," 	⧢ 	%'!⋯%'%#!)%,"#!%'% − 

 
(%,!⋯%,"#! ⧢ %'!⋯%'%#$%'%)%,"%'%#! − 

 
(%,!⋯%,"#$%," ⧢ 	%'!⋯%'%#$%'%)%,"#!%'%#! = 

 
(by part  a of Proposition 2.2.2)  
 
 (%'!⋯%'% 	⧢ 	%,!⋯%,"#$)%,"#!%," − %'!⋯%'%#$%'%%'%#! 	⧢ 	%,!⋯%,"#$)	%,"#!%," − 
 
(%,!⋯%," 	⧢ 	%'!⋯%'%#$)%'%#!%'" − %'!⋯%,"#$%,"%,"#! 	⧢ 	%'!⋯%'%#$)	%'%#!%'% + 
 
(%'!⋯%'%#! 	⧢ 	%,!⋯%,"#!)%'%%," − (%'!⋯%'%#$%'% 	⧢ 	%,!⋯%,"#!)%'%#!%," − 

 
(%'!⋯%'%#! ⧢ %,!⋯%,"#$%,")%'%%,"#! − 

 
	(%'!⋯%'%#$%'% ⧢ 	%,!⋯%,"#$%,")%,%#!%,"#! . 

 
This completes the proof. 

Lemma 2.2.6  If J is an element of !"(1), then R(J) = −J.  
Proof. The proof is achieved by the fact that !"(1) is generated by the 

commutator products on 1 and [%, '] = %' for any %, ' ∈ 1, and by using Lemma 2.2.4 
and Lemma 2.2.5.  

Now we prove that any skew-right-commutative element of 234(1) is a Lie 
element. 
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Lemma 2.2.7  Let [ is an element of 234(1) with R([) = −[. Then we have 
[ ∈ !"(1).  

Proof. Write 5 ≡ 7 if 5 − 7 ∈ !"(1). If R([) = −[, then [ can be expressed as 
a linear combination of skew-right-commutative elements. In order to prove that the 
element [ ∈ !"(1), it is enough to show that 

 
 %'!⋯%'" ≡ 0. (10)

  
 We prove it by induction on 4. 

If 4 = 2, the proof is straightforward, and if 4 = 3, we have:  
 

%'!%'$%'' =
1

2
¢û%'! , %'$ü, %''£ −

1

2
¢û%'! , %''ü, %'$£. 

 
Assuming that equation (10) holds for elements of degree less than 4, we have 

 
L%',+!⋯%'" ≡ 0, 

 
for any Lie element L whose degree is no more than t. Set L ≔ %'!⋯%',  and have  

 
%'!⋯%',%',+!⋯%'" ≡ 0,	  for 1 < t < 4 − 1. 

 
Hence,  
 

%'!⋯%',%',+!⋯%'" ≡ %'!⋯%',#$%',%',#!%',+!⋯%'" . 
		 

Since the symmetric group !%$+ is generated by transpositions (12), (23), … ,

(4 − 3	4 − 2), for any ö ∈ !%$+ we have  
 

 %'!⋯%'" ≡ %<('!)⋯%<('"#$)%'"#!%'" .     (11) 
 

By (11) and Lemma 2.4 we have  
  

û%'!⋯%'"#! , %'"ü ≡ %'!⋯%'"#$%'"#!%'" − %'!⋯%'"#$%'"#!%'"#$%'" − 
 

−(4 − 2)%'!⋯%'"#'%'"%'"#$%'"#! ≡ 0. 
 
Also, can be obtained the following 
 

û%'!⋯%'"#$%'" , %'"#!ü ≡ 
 

%'!⋯%'"#$%'"%'"#! − %'!⋯%'"#'%'"%'"#$%'"#! − (4 − 2)%'!⋯%'"#'%'"%'"#$%'"#! = 
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−%'!⋯%'"#$%'"#!%'" − %'!⋯%'"#'%'"%'"#$%'"#! − (4 − 2)%'!⋯%'"#'%'"%'"#$%'"#!. 
 
Consider the sum of the above last two expressions and we have  
 

û%'!⋯%'"#! , %'"ü + û%'!⋯%'"#$%'" , %'"#!ü ≡ 
 

−(4 − 1)%'!⋯%'"#'%'"#!%'"#$%'" − (4 − 1)%'!⋯%'"#'%'"%'"#$%'"#! ≡ 0. 
 

Thus 
 

%'!⋯%'"#'%'"#!%'"#$%'" ≡ −%'!⋯%'"#'%'"%'"#$%'"#! . 
 

In other words,  
   

 %'!⋯%'"#'%'"#$%'"#!%'" ≡ −%'!⋯%'"#'%'"%'"#!%'"#$ . (12) 
 
Set J = %'!⋯%'"#( . By (11) and (12) we have  
 

J	%'"#'%'"#$%'"#!%'" ≡ −J	%'"#'%'"%'"#!%'"#$ ≡ J	%'"%'"#'%'"#$%'"#! ≡ 
 

J	%'"#!%'"%'"#'%'"#$ ≡ J	%'"%'"#!%'"#'%'"#$ ≡ J	%'"#$%'"%'"#!%'"#' ≡ 
 

J	%'"#'%'"#$%'"%'"#! ≡ −J	%'"#'%'"#$%'"#!%'" . 
 
Hence, 
 

J	%'"#'%'"#$%'"#!%'" ≡ 0 
 
and this completes the proof.  

Now we are ready to prove the main theorems of the section. 
Theorem 2.2.8  Let [ be a Zinbiel element of 234(1). Then [ is a Lie element if 

and only if R([) = −[.  
Proof. It follows from Lemma 2.2.6 and Lemma 2.2.7. 

Theorem 2.2.9  The set of skew-rcom elements %&, where : ∈ g, forms base of 
!"(1). Let !"(1)1!,…,1*  be the homogenous part of !"(1) generated by f' 
generators %' where 3 = 1,… , ú. Then  

 

`3f !"(1)1!,…,1* 	= 		p
(4 − 2)!

f(!⋯	f?!'	I,

f'f, 

 
where 4 = f( +⋯+f?. In particlular, the multilinear part of !"(1) has dimension 
?!

+
.  
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Proof. Since a skew-rcom element defined as   
 

%'!⋯%'" = %'!⋯%'"#!%'" − %'!⋯%'"#$%'"%'"#! 
 
a difference of two base elements, any linear combination of skew-rcom elements is 
trivial, hence they are linearly independent in 234(1). By Lemma 2.2.6, any element 
of !"(1) is a linear combination of skew-rcom elements. So we have proved that the 
set of skew-rcom elements, generated by set 1, forms a base of !"(1). 

Let us count the number of skew-rcom elements of degree 4 generated by 
%(, … , %? in which %(, … , %? occur f(, … ,f? times, respectively. Consider skew-rcom 
elements whose last two elements are %' , %, for 3 < b. Then the number of such type of 
skew-rcom elements of degree 4 equals 
 

(4 − 2)!

f(!⋯	(f' − 1)!⋯	df, − 1e!⋯	f?!
=

(4 − 2)!

f(!⋯	f?!
f'f, , 

 
where f( +⋯+f? = 4. Hence 
 

dim!"(1)1!,…,1* =p
(4 − 2)!

f(!⋯	f?!
f'f, .

'I,

 

 
If f' = 1 for all 3, then 4 = ú, and we obtain 
  

dim!"(1)(,…,( = p (ú − 2)!

(J	'I	,J	?

=
ú!

2
.	

 
This completes the proof. 

Corollary 2.2.10  Let 5, 7, P ∈ 234(1). If 7 and P are Lie, then 57P − 5P7 and 
7P − P7 are Lie.  

Proof. We present a proof of our Corollary for 57P − 5P7. The case 7P − P7 can 
be established in a similar way. 

Let 5 ∈ 234(1) and suppose 7, P ∈ !"(1). Then by Theorem 2.2.9  
 

7 =pi&%&;;;

&

, P = pßK'K;;;

K

. 

 
We have 
 

57P − 5P7 = 5pi&%&;;;

&

pßK'K;;;

K

− 5pßK'K;;;

K

pi&%&;;;

&

= 
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pi&ßKd5	%&;;;	'K;;; − 5	'K;;;	%&;;;	e.

&,K

 

 
Let %& = %'!⋯%'%  and 'K = ',!⋯'," . The cases, when at least one of f and 4 is 
equal to two, can be easily proved. Suppose f, 4 ≥ 3. Set J = %'!⋯%'%#$ and l =
',!⋯',"#$ .  

 
5	%&;;;	'K;;; = 

 
5dJ	%'%#! 	%'%edl',"#!',"e − 5dJ	%'% 	%'%#!edl',"#!',"e − 

 
5dJ	%'%#! 	%'%edl',"',"#!e + 5dJ	%'% 	%'%#!edl',"',"#!e = 

 
(by part  b of Proposition 2.2.2)  
 

îd5	 ⧢ 	J	%'%#!e%'% ⧢ 	l',"#!ï '," − îd5 ⧢ J%'%e%'%#! ⧢ l',"#!ï '," − 
 

îd5	 ⧢ 	J	%'%#!e%'% ⧢ 	l',"ï ',"#! + îd5 ⧢ J%'%e%'%#! ⧢ l',"ï ',"#! = 
 
(by part  c of Proposition 2.2.2)  
 

îd5	 ⧢ 	J	%'%#!e 	⧢ 	l',"#!ï %'%'," + îd5	 ⧢ 	J	%'%#!e%'% 	⧢ 	lï ',"#!'," − 
 

îd5	 ⧢ 	J	%'%e 	⧢ 	l',"#!ï %'%#!'," − îd5	 ⧢ 	J	%'%e%'%#! ⧢ 	lï ',"#!'," − 
 

îd5	 ⧢ 	J	%'%#!e 	⧢ 	l',"ï %'%',"#! − îd5	 ⧢ 	J	%'%#!e%'% ⧢ 	lï ',"',"#! + 
 

îd5	 ⧢ 	J	%'%e 	⧢ 	l',"ï %'%#!',"#! + îd5	 ⧢ 	J	%'%e%'%#! ⧢ 	lï ',"',"#! = 
 
(by the definition of skew-right-commutative elements we obtain) 
  

îd5	 ⧢ 	J	%L%#!e%L% 	⧢ 	lï 'M"#!'M"
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

− îd5	 ⧢ 	J	%L%e%L%#! ⧢ 	lï 'M"#!'M"
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

+ 
 

îd5	 ⧢ 	J	%'%#!e 	⧢ 	l',"#!ï %'%'," − îd5	 ⧢ 	J	%'%e 	⧢ 	l',"#!ï %'%#!'," − 
 

îd5	 ⧢ 	J	%'%#!e 	⧢ 	l',"ï %'%',"#! + îd5	 ⧢ 	J	%'%e 	⧢ 	l',"ï %'%#!',"#! . 
 
By similar way one can have 
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5	'K;;;	%&;;; = 

 
îd5	 ⧢ 	l	'M"#!e'M" 	⧢ 	Jï %L%#! 	%L%
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

− îd5	 ⧢ 	l	'M"e'M"#! ⧢ 	Jï %L%#! 	%L%
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

+ 
 

îd5	 ⧢ 	l	',"#!e 	⧢ 	J	%'%#!ï ',"%'% − îd5	 ⧢ 	l	',"e 	⧢ 	J	%'%#!ï ',"#! 	%'% − 
 

îd5	 ⧢ 	l	',"#!e 	⧢ 	J	%'%#!ï ',"%'%#! + îd5	 ⧢ 	l	',"e 	⧢ 	J	%'%ï ',"#!%'%#! . 
 

So  
 

5	%&;;;	'K;;; 	− 5	'K;;;	%&;;; = 
 
(by part  a of Proposition 2.2.2)  
 

îd5	 ⧢ 	J	%L%#!e%L% 	⧢ 	lï 'M"#!'M"
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

− îd5	 ⧢ 	J	%L%e%L%#! ⧢ 	lï 'M"#!'M"
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

+ 
 

îd5	 ⧢ 	J	%L%#!e 	⧢ 	l'M"#!ï %L%'M"
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

− îd5	 ⧢ 	J	%L%e 	⧢ 	l'M"#!ï %L%#!'M"
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

− 
 

îd5	 ⧢ 	J	%L%#!e 	⧢ 	l'M"ï %L%'M"#!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

+ îd5	 ⧢ 	J	%L%e 	⧢ 	l'M"ï %L%#!'M"#!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

− 
 

îd5	 ⧢ 	l	'M"#!e'M" 	⧢ 	Jï %L%#! 	%L%
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

+ îd5	 ⧢ 	l	'M"e'M"#! ⧢ 	Jï %L%#! 	%L%
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

. 
 
Hence by Theorem 2.2.8 we have 57P − 5P7 ∈ !"(1) and this completes the proof. 

 
2.3   Jordan elements in a free Zinbiel algebra  
In this section, we demonstrate the proof of the Jordan criterion for elements in 

a free Zinbiel algebra 234(1). We provide an explicit formula for expanding Jordan 
bracketed elements in a free Zinbiel algebra. 

Lemma 2.3.1  
 

®ò⋯ ò%'! , %'$ô⋯ ô, %'"© = p %<('!)%<('$)⋯	%<('")
<∈B"

. 

 
Proof. We prove it by induction on 4. For the base of induction 4 = 2, we have  

{%'! , %'$} = %'!%'$ + %'$%'! . Suppose that it is true for 4 − 1. Then  
 

®ò⋯ ò%'! , %'$ô⋯ ô, %'"© = 
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®ò⋯ ò%'! , %'$ô⋯ ô, %'"#!© %'" + %'" ®ò⋯ ò%'! , %'$ô⋯ ô, %'"#!© = 
 
(by induction hypothesis)  
 

p %<('!)%<('$)⋯	%<('"#!)
<∈B"

%% + %% p %<('!)%<('$)⋯	%<('"#!)
<∈B"

= 

 
(by Proposition 2.2.1) 
 

= p %<('!)%<('$)⋯	%<('")
<∈B"

. 

 
This completes the proof. 

Theorem 2.3.2  Let [ be a homogenous Zinbiel element of degree 4 in 234(1). 
Then [ is a Jordan element if and only if ñ([) = 4! [. The algebra u(1) is isomorphic 
to polynomial algebra j[1].  

Proof. Recall that +(") is associative and commutative algebra if + is Zinbiel. 
Any Jordan element in 234(1) can be written as linear combination of left-normed 
Jordan monomials in 1 by anti-commutators. Then the proof follows from Lemma 4.1 
and definition of the map ñ. 
 Let Ü:j[1] → u(1) be a canonical homomorphism from polynomial algebra 
generated by 1 to u(1) defined as %'!%'$⋯%'" ↦ {{⋯ {%'! , %'$}⋯ }, %'"}. Then it is 
clear that j{]	Ü is zero and therefore j[1] and u(1) are isomorphic. This completes 
the proof. 

Denote by u(1)1!,…,1*  the homogenous part of u(1) generated by f' generators 
%' where 3 = 1,… , ú.  

Corollary 2.3.3  The dimension of the homogenous part u(1)1!,…,1*  of u(1) is 
equal to `3f	u(1)1!,…,1* = 1.  

Proof. It is an immediate consequence of Theorem 2.3.2. 
 

2.4  Speciality of the free Tortkara algebra with two generators 
In this section we prove that the free Tortkara algebra with two generators 

"({%, '}) is special. As a corollary, we obtain the construction of a base of "({%, '}) 
in terms of left-normed elements.  

Lemma 2.4.1 Let "% be the n-th homogenous part of "({%, '}). Then "%"( =
"%"( for any 4.  

Proof. Clearly, "%"( ⊇ "%"(. We write 5 ≡ 7 if 5 − 7 ∈ "%"(. We prove the 
statement by induction on degree 4. We have  

 

(57)(P`) =
1

2
u(7, P, `)5 −

1

2
u(5, P, `)7 −

1

2
u(5, 7, `)P +

1

2
u(5, 7, P)` ≡ 0 
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This is the basis of induction for 4. Suppose that our statement is true for fewer than 
4 > 4. Let ç ∈ "% and ç = +/>= where +/ and >= are elements of "({%, '}) whose 
degrees are t and ã, respectively, and t + ã = 4. Now we consider induction on ã. By 
induction on 4 we may assume that they are left-normed and write  
 

ç = +/>= = (+/$(5/)(>=$(7=) 
 
where 5/, 7= ∈ {%, '}. Suppose ã = 2 and 7( = %, 7+ = '. Assume 5/ = %. Then by 
Tortkara identity (4) and induction on 4 we have  
 

ç = (+/$(%)('%) = u(+/$(, %, ')% ≡ 	0. 
 
Suppose that our statement is true for fewer than ã > 2. We have  
 

(+/$(5/)(>=$(7=) = 
  

−(+/$(5/)(7=	>=$() = 
 
(by identity (4))  
 

(+/$(>=$()(7=5/) − u(+/$(, 5/, 7=)>=$( − u(+/$(, >=$(, 7=)5/. 
 
We note that by base of induction on ã, 
 

(+/$(>=$()(7=5/) ≡ 0	and	u(+/$(, 5/, 7=)>=$( ≡ 0. 
 
By induction on 4 we have 
 

u(+/$(, >=$(, 7=)5/ ≡ 0. 
 
Hence, (+/$(5/)(>=$(7=) ≡ 0. This means that any element in	"({%, '})	can be writ-
ten as a linear combination of left-normalized elements. 

Let "(1) be a free Tortkara algebra generated by a set 1.  
Theorem 2.4.2  The free Tortkara algebra "({%, '}) is special.  

Proof. It is sufficient to show that algebras "({%, '}) and !"({%, '}) are isomorphic. 
Let Ü be a natural homomorphism from "({%, '}) to !"({%, '}). By Lemma 2.4.1 the 
vector space "({%, '}) is spanned by the set of left-normed elements. We note that 
number of left-normed elements in two generators is equal to the number of skew-rcom 
elements in two generators. Suppose that the kernel of Ü is not zero. Then we have a 
linear combination of skew-rcom elements which is zero in !"({%, '}). It contradicts 
to the first part of Theorem 2.2.9. Therefore, j{]Ü = (0). This completes the proof. 

Corollary 2.4.3. Set of left-normed elements forms a base of "({%, '}).  
Proof. It is an immediate consequence of Theorem 2.4.2. 
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2.5  Speciality of homomorphic images of ≠Æ({Ø, ∞}) 
The next theorem is an analogue of Cohn’s theorem on the speciality of 

homomorphic images of special Jordan algebras in two generators Lemma 1.3.4 [7, p. 
255]) Let : be an ideal of free special Jordan algebra !u(1) and {:} is an ideal of free 
special associative algebras generated by the set :. Then !u(1)/: is a special Jordan 
algebra if and only if {:} ∩ !u(1) ⊆ :.  

 
Theorem 2.5.1  Any homomorphic image of a free special Tortkara algebra 

with two generators is special. For the three generators case, this statement is not 
true: a homomorphic image of special Tortkara algebra with three generators might 
be non-special.  

Let : be an ideal of !"(1). By Cohn’s criterion (Theorem 2.2 of [7, p. 255]) 
!"(1)/: is special if and only if : ∩ !"(1) ⊆ : where : is the ideal of 234(1) ge-
nerated by the set :. 

Proof of Theorem 2.5.1. Assume that å' (3 ∈ U) are generators of the ideal :. It 
is clear that if %' ∈ : then !"({%, '})/: is special. 

Therefore, by Theorem 2.2.8 we can assume that each element å' has a form 
['%' for some [' ∈ 234({%, '}). 

Let m be a non-zero element of : ∩ !"({%, '}). Then R(m) = −m and m is a 
linear combination of left-normed monomials in %, ', å'(3 ∈ U) such that each 
monomial is linear by at least one generator of :. Let 7(⋯7% be a term of m in the 
linear combination. To prove the statement we consider two cases, depending on what 
position a generator appear in 7(⋯7%. 

 Case 1. Suppose that generators of : appear only in the first 4 − 2 positions in 
7(⋯7%. Then write all 7'-Å in terms of elements of 1. Since m ∈ !"({%, '}), m must 
have the term R(7(⋯7%) with opposite sign. Hence 7(⋯7% ∈ :. 

 Case 2. Suppose that generators of : appear in either 4 − 1-th or 4-th positions 
in 7(⋯7%, (a generator of : may appear in the first 4 − 2-positions), namely,  

 
7%$( = % and 7% = [L%'

;;;;;, or 7%$( = [L%'
;;;;; and 7% = % 

 
for some 3. If generators of : appear in both 4 − 1-th and 4-th positions of 7(⋯7%, 
then write one of them in terms of %0Å and '0Å. We also express 7(, … , 7%$+ in terms 
of %0Å and '0Å, therefore we can assume that 7(, … , 7%$+ ∈ 1. Let us denote 7(⋯7%$+ 
by J. 

Now we show that if J%['%' is a term of m then m has the term J['%'% with 
opposite sign. 

We have  
 

J%[L%'
;;;;; = ±( + ±+ − ±3, 

where 
 

±( = [LJ%%'
;;;;;;;;; + J[L%%'

;;;;;;;;; + J%[L%'
;;;;;;;;;,  
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±+ = ['J%%' + ['%J%' + J['%%',  
 

±3 = ['J'%% + [''J%% + J[''%%. 
 
By Theorem 2.2.8, ±( is Lie, but ±+, ±3 are not Lie. Since m ∈ !"({%, '}), the term ±3 
should be cancelled and for each term Å ∈ ['J%%', ['%J%', J['%%' of ±+, m must have 
terms Å or R(Å) with opposite sign to cancel Å or have Å. Therefore, m must have some 
terms in which å' (3 ∈ U) appear in either 4 − 1-th or 4-th positions. These kind of 
terms are generated by J, [, %, %, '. Then all possibilities of such types are 
J['%'%, ['%J%' and ['J%'%. We have  
 

J[L%'
;;;;;% = ['J%'% + ['%J'% + J['%'% − ['J'%% − [''J%% − J['	'%%, 

 
['%J%';;;;; = [LJ%%'

;;;;;;;;; + [L%J%'
;;;;;;;;; + J[L%%'

;;;;;;;;; + ['J%%' + J['%%' + J%['%' − 
 

−['J'%% − J[''%% − J'['%%, 
 

['J%';;;;;% = ['J%'% + J['%'% + J%[''% − ['J'%% − J[''%% − J'['%%. 
 
We see that the element [''J%% is a term of only J['%% and moreover,  
 

J%[L%'
;;;;; − J[L%'

;;;;;% = [LJ%%'
;;;;;;;;; + J[L%%'

;;;;;;;;; + J%[L%'
;;;;;;;;; + [LJ%%'

;;;;;;;;; + 
 

[L%J%'
;;;;;;;;; + J[L%%'

;;;;;;;;; ∈ !"({%, '}). 
 

Therefore, m has the term J['%'% with opposite sign. Since ['%' is a generator of :, 
and by Corollary 2.2.3  
 

J%[L%'
;;;;; − J[L%'

;;;;;% ∈ :. 
 
Hence 7(⋯7% − 7(⋯7%$+7%7%$( ∈ :. If %['%' is a nonzero term of m, then by 
similar way one can show that m must have term ['%'%. 

So we obtain m ∈ :. It follows : ∩ !"({%, '}) ⊆ :. Hence by Cohn’s criterion 
!"({%, '})/: is special. 

Now we show that a homomorphic image of !"({%, ', L}) may be not special. 
Let : be an ideal of !"({%, ', L}) generated by elements  
 

å( =	''L;;;;;, å+ = '%L;;;;;, å3 = '%';;;;;. 
 
Consider an element  
 

m = %''L;;;;;;; − ''%L;;;;;;; + L'%';;;;;;;. 
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Then 
 

m = %å( − 'å+ + Lå3. 
 
It follows   
 

m ∈ !"({%, ', L}). 
 
One can easily check that there are no i(, i+, i3 ∈ j so that  
 

m = i([%, å(] + i+[', å+] + i3[L, å3]. 
 
Then m ∉ :. Hence by Cohn’s criterion, !"({%, ', L})/: is not special. 

Corollary 2.5.2  Any Tortkara algebra with two generators is special.   
Proof. It follows from Theorem 2.4.2 and Theorem 2.5.1.   

This result is an analogue of Shirshov theorem for Jordan algebras [51, p. 84]. 
 
2.6   Some remarks and open questions 

1. Let + = ç[%] be an algebra with multiplication  

  
 5 ⋆ 7 = 7 ∫

7
2 (∫

7
2 5	`%)`%. (13) 

 
 (+,⋆) is not a Zinbiel algebra. This algebra ç[%] with multiplication	(13) was 
considered in [1]. It was proved that it satisfies the following identities  
 

5 ⋆ (7 ⋆ P) − 7 ⋆ (5 ⋆ P) = 0, 
  (14) 

([5, 7], P, `) + ([7, P], 5, `) + ([P, 5], 7, `) = 0 
 

 where (5, 7, P) = 5 ⋆ (7 ⋆ P) − (5 ⋆ 7) ⋆ P. Moreover, it was proved that algebra + 
with respect to commutator [5, 7]⋆ = 5 ⋆ 7 − 7 ⋆ 5 is a Tortkara algebra. A question 
on speciality of (+, [, ]⋆) was posed. 

We show that answer is positive. Let > = ç[%] be an algebra with multiplication 
 
 5 ⋄ 7 = 7 ∫

7
2 d∫

7
2 5`%e`% + (∫

7
2 5`%)(∫

7
2 7`%). 

 
Then (>,⋄) is a Zinbiel algebra. For ⋄ multiplication we define commutator [5, 7]⋄ =
5 ⋄ 7 − 7 ⋄ 5. Note that [5, 7]⋆ = [5, 7]⋄. So +($) is isomorphic to >($). Hence 
(+, [, ]⋆) is special. 

 2. It is shown in [1] that an algebra with identities (14) is not Zinbiel but under 
the commutator product is Tortkara. What about speciality of these algebras? 
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 3. Let t1 be kernel of the natural homomorphism from free Tortkara algebra to 
free special Tortkara algebra on f generators. An element of the ideal t1 is called a 
Å-identity. We showed that t+ = (0). Are there Å-identities for f > 2? 

 4. Is it true the analogue of Lemma 2.4.1 for f > 2 generators? Whenever it is 
valid for f generators, it immediately follows speciality of "({%(, … , %1}), in 
particular, t1 = (0). 
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3  NILPOTENT ASSOSYMMETRIC ALGEBRAS 
 
In this chapter, we mainly study assosymmetric algebras of finite class and study 

commutator ideals of assosymmetric algebras. We show that some of the properties for 
associative algebras also hold for assosymmetric algebras, namely, for such properties 
associativity is not necessary and can be replaced by left-symmetry and right-
symmetry. The results of this chapter were published in [41 – 43, 49]. 

 
3.1  Commutator ideals of assosymmetric algebras 
We begin with some basic facts on Lie-admissible algebras. The results of this 

section were published in [49]. 
Let + be an arbitrary Lie-admissible algebra over a given field Q. We define  
 
 [5, 7] = 57 − 75 
 

for all 5 and 7 ∈ +. For all subspaces >, ç, D of +, we define  
 

[>, ç] = span{[7, P]|7 ∈ >, P ∈ ç},				>ç = span{7P|7 ∈ >, P ∈ ç} 
 

and  
 

(>, ç, ñ) = span{(7, P, `)| ∈ >, P ∈ ç, ` ∈ ñ}, 
 

where the associator (5, 7, P) means (57)P − 5(7P). We call a space B ⊆ + a Lie ideal 
of + if we have [B, +] ⊆ B. Finally, for all subspaces + and > of +, we define  
 

+ ∘ > = Id([+, >]), 
 

that is, the ideal of + generated by [+, >]. Following the idea of Jennings [19, p. 341], 
we call + ∘ > the commutator ideal of + and >. We clearly have + ∘ > = > ∘ +. 

Equipped with the notion of commutator ideals, we are now able to recall the 
notion of central chains of ideals of a Lie-admissible algebra +. 

Let  
 
 + = +( ⊇ ++ ⊇ ⋯ ⊇ +1 ⊇ +1"( = (0) (15) 
 

 be a chain of ideals of +. Such a chain is called a central chain of ideals if we have  
 

 + ∘ +' ⊆ +'"(						(3 = 1,2, . . .				 , f). (16) 
 

 We shall soon see that Novikov algebras, bicommutative algebras and assosymmetric 
algebras which possess central chains of ideals have special properties; we investigate 
some of them by considering a particular central chain:  
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Definition 3.1.1  For every Lie-admissible algebra + we form a series of 
ideals  

 
 G(: = +, G'"(: = G' ∘ +			[\]			3 ≥ 1. (17) 
 

 We say that + is of finite class if G% = (0) for some positive integer 4. For the minimal 
integer 4 such that G% = (0), we call 4 − 1 the class of +, and call  
 

 + = G( ⊇ G+ ⊇ ⋯ ⊇ G%$( ⊇ G% = (0) (18) 
 

 the lower central chain of +. To avoid too many repetitions, we shall fix the notation 
of G' for all 3 ≥ 1.  

With the notations of (16) and (18), it is straightforward to show that G' ⊆ +' by 
induction on 3. 

The next subsection provides us with a description of commutator ideals of 
assosymmetric algebras. 

 
3.1.1  Assosymmetric algebras of finite class 
 The aim of this subsection is to study assosymmetric algebras of finite class. 

Recall that for all %, ', L in an algebra +, the associator (%, ', L) means (%')L − %('L). 
So in every assosymmetric algebra +, we have (', %, L) = (%, ', L) = (%, L, ') for all 
%, ', L ∈ +. 

It is proved in [22, p. 984] that for all %, ', L, m in an assosymmetric algebra +, 
we have 

 
 ([%, '], L, m) = 0			3[			char(Q) ≠ 2,3. (19) 
 

 By the same technique developed in [22, p. 983], we obtain some more identities as 
follows when char(Q) = 2 or 3.  

Lemma 3.1.2 For all %, ', L, m in an assosymmetric algebra +, we have  
 
 (%, ', L) = −[%, ']L + %[', L] + [%L, ']; (20) 

  
 ([m, %], ', L) = [m, (%, ', L)] + [%, (m, ', L)]			3[			char(Q) = 2; (21) 

  
 [%', L] = −['L, %] − [L%, ']			3[			char(Q) = 3; (22) 
  
Proof.  (i) Proof of identity (20). Note that  
 
 (%, ', L) = −(%, ', L) + (', %, L) + (%, L, ') 
 
 = −(%')L + %('L) + ('%)L − '(%L) + (%L)' − %(L') 
 
 = −(%')L + ('%)L + %('L) − %(L') + (%L)' − '(%L) 



 42 

 
 = −[%, ']L + %[', L] + [%L, ']. 
 

 The proof of identity (20) is completed. 
 (ii) Proof of identity (21). Following [22, p. 984], we define  
 
 [(m, %, ', L) = (m%, ', L) − %(m, ', L) − (%, ', L)m. 
 

Then it is obvious that  
 

 [(m, %, ', L) = [(m, %, L, '). (23) 
 

 We also note that [22, p. 984] in any algebra we have  
 

 (m%, ', L) − (m, %', L) + (m, %, 'L) = m(%, ', L) + (m, %, ')L. (24) 
 

 By identity (24), we deduce  
 

 [(m, %, ', L) + [(L, m, %, ') = 
 

(m%, ', L) − %(m, ', L) − (%, ', L)m + (Lm, %, ') − m(L, %, ') − (m, %, ')L = 
 

 (m%, ', L) − %(m, ', L) − (%, ', L)m + (Lm, %, ') − 
 

 (m%, ', L) + (m, %', L) − (m, %, 'L = 
 

 −%(m, ', L) − (%, ', L)m + (Lm, %, ') + (m, %', L) − (m, %, 'L) = 
 

 −%(m, ', L) − (%, ', L)m + (%', L, m) − (%, 'L, m) + (%, ', Lm) = 0. 
 

Combining this with identity (23), we obtain  
 

 [(m, %, ', L) = −[(L, m, %, ') = [(', L, m, %), (25) 
 

 and thus  
 

 [(m, %, ', L) = [(', L, m, %) = [(', L, %, m) = [(%, m, ', L). (26) 
 

 Therefore, if char(Q) = 2, we obtain 
 
 0 = 2[(m, %, ', L) 

 
 = [(m, %, ', L) + [(%, m, ', L) 
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 = (m%, ', L) + %(m, ', L) + (%, ', L)m + 
 

 (%m, ', L) + m(%, ', L) + (m, ', L)% 
 

 = ([m, %], ', L) + [m, (%, ', L)] + [%, (m, ', L)]. 
 

The proof of identity (21) is completed. 
 (iii) Proof of identity (22). If char(Q) = 3, then we have  
 

[%', L] + ['L, %] + [L%, '] = (%')L − L(%') + ('L)% − %('L) + (L%)' − '(L%) 
 

= (%, ', L) + (', L, %) + (L, %, ') = 3(%, ', L) = 0. 
 

 Identity (22) follows immediately.  
Now we begin to study associators involving Lie ideals of an assosymmetric 

algebra +.  
Lemma 3.1.3  Let > and ç be Lie ideals of +. Then the following statements are 

true: 
(i) For all % ∈ ç, ', L ∈ >, (', %, L) ∈ +[ç, >] + [ç, >]; In particular, 

(', %, L) is contained in the ideal of + generated by [ç, >]; 
(ii)  + ∘ > = [>, ç] + +[>, ç] = [>, ç] + [>, ç]+.  

Proof.  (i) By identity (20), we deduce  
 

(', %, L) = −[', %]L + '[%, L] + ['L, %] = 
 

−[[', %], L] − L[', %] + '[%, L] + ['L, %] ∈ +[ç, >] + [ç, >]. 
 

 The proof is completed. 
 (ii) Clearly, [>, ç] is a Lie ideal of +. It follows that  
 
 [>, ç]+ ⊆ +[>, ç] + [[>, ç], +] ⊆ +[>, ç] + [>, ç]. 
 

In particular, [>, ç] + +[>, ç] is an ideal of + if and only if so does [>, ç] + [>, ç]+. 
By  (i) , for all %, ' ∈ +, 5 ∈ >, 7 ∈ ç, we have  
 
 (%, [5, 7], ') ∈ [[>, ç], +] + +[[>, ç], +] ⊆ +[>, ç] + [>, ç]. 
 

It follows that  
 

 %('[5, 7]) = (%')[5, 7] − (%, ', [5, 7]) = 
 

(%')[5, 7] − (%, [5, 7], ') ∈ +[+, >] + [+, >]. 
 

Therefore, we deduce  
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 (%[5, 7])' = (%, [5, 7], ') + %([5, 7]') = 
 

(%, [5, 7], ') + %('[5, 7]) + %[[5, 7], '] ∈ +[>, ç] + [>, ç]. 
 

The proof is completed.  
Corollary 3.1.4  Let {+>|	R ≥ 1} be a family of ideals of + with + ∘ +> ⊆ +>"( 

for every R ≥ 1. Then for all 5 ∈ +>, for all %, ' ∈ +, we have (%, 5, ') ∈ +>"(.  
Proof. By Lemma 3.1.3, we have  
 
 (%, 5, ') ∈ [+>, +] + +[+>, +] = + ∘ +> ⊆ +>"(. 
 

The proof is completed.  
Let  
 
 + = +( ⊇ ++ ⊇ ⋯ ⊇ +1 ⊇ +1"( = (0) (27) 
 

 be a central chain of ideals of +. And let G' (3 ≥ 1) be as in Definition 3.1.1. When + 
is assosymmetric, we have the following analogues as those for associative algebras. 
Again, as the associativity does not hold, new techniques are necessary. 

Lemma 3.1.5  Let + be an assosymmetric algebra. Then G>+? ⊆ +>"?$(, 
+?G> ⊆ +>"?$(, [G>, +?] ⊆ +>"? and (G>, +?, +) ⊆ +>"?. In particular, we have 
G>G? ⊆ G>"?$(.  

Proof. Since G> ⊆ +>, +>"? ⊆ +>"?$( and +?G> ⊆ [+?, G>] + G>+?, it 
suffices to prove G>+? ⊆ +>"?$(, [G>, +?] ⊆ +>"? and (G>, +?, +) ⊆ +>"?. 

We use induction on R to prove these claims. For R = 1, we have G(+? ⊆ +?, 
[G(, +?] ⊆ +?"( and by Corollary 3.1.4, we obtain  

 
 (G(, +?, +) ⊆ (+, +?, +) ⊆ + ∘ +? ⊆ +?"(. 
 

Now we assume R ≥ 2. If ℎ> = [ℎ>$(, %] for some ℎ>$( ∈ G>$( and % ∈ +, then for 
every 5 ∈ +?, by induction hypothesis, we have  
 

 ℎ>5 = [ℎ>$(, %]5 =
(+2)

− (ℎ>$(, %, 5) + ℎ>$([%, 5] + [ℎ>$(5, %] 
  
 ∈ (G>$(, +?, +) + G>$(+?"( + [G>$(+?, +] ⊆ +>"?$(. 
 

 By the Jacobi identity and induction hypothesis, we obtain  
 

 [ℎ>, 5] = [[ℎ>$(, %], 5] = [[ℎ>$(, 5], %] + [ℎ>$(, [%, 5]] 
 

 ∈ [+>"?$(, +] + [G>$(, +?"(] ⊆ +>"?. 
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We continue to show ([ℎ>$(, %], 5, m) ∈ +>"? for every m ∈ +. There are several cases 
to discuss depending on the characteristic of the field. If char(Q) ≠ 2,3, then by 
identity (19), we have ([ℎ>$(, %], 5, m) = 0 ∈ +>"?. If char(Q) = 2, then by identity 
(21) and by Corollary 3.1.4, we have  
 

 ([ℎ>$(, %], 5, m) = [ℎ>$(, (%, 5, m)] + [%, (ℎ>$(, 5, m)] 
 

 ∈ [G>$(, +?"(] + [+, +>"?$(] ⊆ +>"?. 
 

If char(Q) = 3, then by identities (20) and (22) and by the above reasoning, we have  
 

([ℎ>$(, %], 5, m) = 
  

= −[[ℎ>$(, %], 5]m + [ℎ>$(, %][5, m] + [[ℎ>$(, %]m, 5] 
  
= −[[ℎ>$(, %], 5]m + [ℎ>$(, %][5, m] − [m5, [ℎ>$(, %]] − [5[ℎ>$(, %], m] 
 
 ∈ +>"? + [ℎ>$(, %]+?"( + [+>"?$(, +] ⊆ +>"?. 

 
Now we prove for the case when R ≥ 2 and ℎ> = [ℎ>$(, %]' for some elements 

ℎ>$( ∈ G>$( and %, ' ∈ +. By the above reasoning and by the right-symmetric 
identity, we have  

 
ℎ>5 = ([ℎ>$(, %], ', 5) + [ℎ>$(, %]('5) = ([ℎ>$(, %], 5, ') + [ℎ>$(, %](' ∈ +>"?$(. 

 
By identity (20) and by the above reasoning, we obtain  

  
[ℎ>, 5] = [[ℎ>$(, %]', 5] = ([ℎ>$(, %], 5, ') + [[ℎ>$(, %], 5]' − [ℎ>$(, %][5, '] 

  
 ∈ +>"? + [ℎ>$(, %]+?"( ⊆ +>"?. 
 

 Finally, by the above reasoning and by the induction hypothesis, for every m ∈ +, we 
deduce  
 

([ℎ>$(, %]', 5, m) =
(+2)

− [[ℎ>$(, %]', 5]m + ([ℎ>$(, %]')[5, m] + [([ℎ>$(, %]')m, 5] 
  
 ∈ [G>, +?]+ + G>+?"( + [G>, +?] ⊆ +>"?. 
 

 The proof is completed.  
Theorem 3.1.6  Let + be an assosymmetric algebra of finite class. Then + ∘ + 

is nilpotent of nilpotent index less or equal to the class of +.  
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Proof. By Lemma 3.1.5 and by similar reasoning as the proof for Theorem 2.5 
in [49], we obtain the description for assosymmetric algebras that generalizes the 
corresponding result of associative algebras.  

 
3.1.2  Products of commutator ideals of assosymmetric algebras 
The aim of this subsection is to study products of commutator ideals of an 

arbitrary assosymmetric algebra + over a field h such that char(Q) ≠ 2,3. 
Let + be an assosymmetric algebra. We define  
 
 +[(] = +					and					+['"(] = [+, +[']]	for	all	3 ≥ 1. 
 

We call Id(+[']) the 3th commutator ideal of +. And the algebra + is called Lie nilpotent 
if +['] = (0) for some integer 3. We shall prove that Id(+['])Id(+[,]) ⊆ Id(+['",$(]) if 
3 is odd or b is odd, which generalizes the corresponding result [48, p. 300] for 
associative algebras.  

For all %, ' ∈ +, we define  
 
 % ∗ ' = %' + '%					54`					[%, '] = %' − '%. 
 

The main difference in the above-mentioned result between associative algebras and 
assosymmetric algebras is the proof of the following lemma.  

Lemma 3.1.7  Let + be an assosymmetric algebra over a field Q such that 
Pℎ5](Q) ≠ 2,3. For every positive odd integer b, we have [U`(+[,]), +] ⊆ +[,"(]. 
Moreover, we have [U`(+[,]), +[']] ⊆ +['",].  

Proof. For all %, ', L ∈ +, we have [%, [', L]] = [[%, '], L] − [[%, L], ']. So the 
second claim follows immediately from the first one. We use induction on b to prove 
the lemma. For b = 1, the claim follows immediately by the definition of +[+] and by 
the above reasoning if 3 ≥ 2. Now we assume that b is an odd integer such that b ≥ 3. 
For all %, ', L, J, l ∈ +, it suffices to show [%[', [L, J]], l] ∈ +[,"(] if J ∈ +[,$+]. By 
assumption, we have char(Q) ≠ 2, so we have  

 
 %[', [L, J]] =

(

+
([%, [', [L, J]]] + % ∗ [', [L, J]]). 

 
So in order to show [%[', [L, J]], l] ∈ +[,"(], it suffices to prove [% ∗ [', [L, J]], l] ∈
+[,"(]. The idea of the proof is to show that [% ∗ [', [L, J]], l] is sort of skew-
symmetric. More precisely, we shall prove that, if one of %, ', L, J, l lies in +[,$+] then  
 

 [% ∗ [', [L, J]], l] ≡ [% ∗ [L, [J, ']], l] ≡ [% ∗ [J, [', L]], l]	f\`	+[,"(]. 
 

Since + is an assosymmetric algebra, by identity (19), we have  
 

 (%, ', [L, J]) = (%, [L, J], ') = ([L, J], %, ') = 0 = 
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 (%')[L, J] − %('[L, J]) = (%[L, J])' − %([L, J]'), 
 

and thus 
 

 

% ∗ [', [L, J]] + ' ∗ [%, [L, J]]

= %('[L, J] − [L, J]') + ('[L, J] − [L, J]')%

+'(%[L, J] − [L, J]%) + (%[L, J] − [L, J]%)'

= (%')[L, J] − %([L, J]') + '([L, J]%) − [L, J]('%)

+('%)[L, J] − '([L, J]%) + %([L, J]') − [L, J](%')

= (%' + '%)[L, J] − [L, J](%' + '%)

= [% ∗ ', [L, J]].

 

 
Let assume that one of %, ', L, J, l lies in +[,$+]. Since [+['], +[P]] ⊆ +['"P], by the 
induction hypothesis, we obtain that [[% ∗ ', [L, J]], l] lies in +[,"(], and thus we 
deduce  
 

 [% ∗ [', [L, J]], l] ≡ −[' ∗ [%, [L, J]], l]	f\`	+[,"(]. (28) 
 

 Similarly, we have  
 

 [% ∗ [', [L, J]], l] + [l ∗ [', [L, J]], %] 
  
 = (%[', [L, J]] + [', [L, J]]%)l − l(%[', [L, J]] + [', [L, J]]%) 
  
 +(l[', [L, J]] + [', [L, J]]l)% − %(l[', [L, J]] + [', [L, J]]l) 
  
 = %([', [L, J]]l) + [', [L, J]](%l) − (l%)[', [L, J]] − l([', [L, J]]%) 
  
 +l([', [L, J]]%) + [', [L, J]](l%) − (%l)[', [L, J]] − %([', [L, J]]l) 
  
 = [', [L, J]](% ∗ l) − (% ∗ l)[', [L, J]] 
  
 = −[% ∗ l, [', [L, J]]]. 
 

 Again, since one of %, ', L, J, l lies in +[,$+], by the induction hypothesis, we easily 
obtain that [% ∗ l, [', [L, J]]] lies in +[,"(], and thus we deduce  
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 [% ∗ [', [L, J]], l] ≡ −[l ∗ [', [L, J]], %]	f\`	+[,"(]. (29) 
 

 On the other hand, by identity (28), we have  
 

 [% ∗ [', [L, J]], l] = −[% ∗ [L, [J, ']], l] − [% ∗ [J, [', L]], l] 
  
 ≡ [L ∗ [%, [J, ']], l] + [J ∗ [%, [', L]], l]		f\`+[,"(]; 
 

 Interchanging % and ' in the above equation, we obtain  
 

 [' ∗ [%, [L, J]], l] ≡ [L ∗ [', [J, %]], l] + [J ∗ [', [%, L]], l]	f\`	+[,"(]. 
 

So by the above two Equations and by the Jacobi identity, we deduce  
 

2[% ∗ [', [L, J]], l]= 
  

= [% ∗ [', [L, J]], l] − [' ∗ [%, [L, J]], l] 
  

≡ [L ∗ [%, [J, ']], l] + [J ∗ [%, [', L]], l] − [L ∗ [', [J, %]], l] − [J ∗ [', [%, L]], l] 
  

≡ [L ∗ [J, [%, ']], l] − [J ∗ [L, [%, ']], l] 
  

≡ 2[L ∗ [J, [%, ']], l]	f\`	+[,"(]. 
 Since char(Q) ≠ 2, we obtain  
 

 [% ∗ [', [L, J]], l] ≡ [L ∗ [J, [%, ']], l]	f\`	+[,"(]. (30) 
 

 Therefore, in the vector space +/+[,"(], we have  
 

û% ∗ û', [L, J]ü, lü ≡
(+Q)

− û' ∗ û%, [L, J]ü, lü ≡
(+Q)(+R)

 
  (31) 

[l ∗ [%, [L, J]], '] ≡
(+Q)(+R)(+Q)

− [% ∗ [l, [L, J]], '], 
 

û% ∗ û', [L, J]ü, lü ≡
(32)

ûL ∗ ûJ, [%, ']ü, lü ≡
(32)(+R)

 
  (32) 

−[l ∗ [J, [%, ']], L] ≡
(32)(+R)(32)

[% ∗ [', [l, J]], L], 
 

 and thus  
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 [% ∗ [', [L, J]], l] ≡ −[% ∗ [', [J, L]], l] ≡
(3+)

[% ∗ [', [l, L]], J] ≡ −[% ∗ [', [L, l]], J].

  (33) 
 Therefore, we deduce  
 

 [% ∗ [', [L, J]], l] ≡
(3()

− [% ∗ [l, [L, J]], '] ≡
(3()(33)

[% ∗ [l, [L, ']], J] 
 

 ≡
(3()(33)(3()

− [% ∗ [J, [L, ']], l] ≡ [% ∗ [J, [', L]], l]	f\`	+[,"(]. 
 

 It follows that  
 

 [% ∗ [', [L, J]], l] ≡ [% ∗ [J, [', L]], l] ≡ [% ∗ [L, [J, ']], l]	f\`	+[,"(]. 
 

Finally, since + is Lie-admissible, we obtain  
 

 3[% ∗ [', [L, J]], l] ≡ 
 

[% ∗ [', [L, J]], l] + [% ∗ [J, [', L]], l] + [% ∗ [L, [J, ']], l] ≡ 0	f\`	+[,"(]. 
 

Since char(Q) ≠ 3, we have [% ∗ [', [L, J]], l] ∈ +[,"(]. The proof is completed.  
We conclude the section with the main result of this subsection, which 

generalizes the corresponding property of associative algebras. The results also 
published in [49]. 

Theorem 3.1.8  Let + be an assosymmetric algebra. Then we have 
U`(+['])U`(+[,]) ⊆ U`(+['",$(]) if 3 or b is odd.  

Proof. If 3 = 1 or b = 1, then clearly we have U`(+['])U`(+[,]) ⊆ U`(+['",$(]). 
Now we assume 3 ≥ 2 and b ≥ 2. Then by Lemma 3.1.3 (ii) and by identity (19), we 
have  

 
 U`(+['])U`(+[,]) = (+['] + ++['])(+[,] + +[,]+) 
  
 ⊆ +[']+[,] + +(+[']+[,]) + (+[']+[,])+ + +(+[']+[,])+. 
 

 So it suffices to show +[']+[,] ⊆ Id(+['",$(]) if one of 3 and b is odd. Since  
 

 +[']+[,] ⊆ [+['], +[,]] + +[,]+['] ⊆ +['",] + +[,]+['], 
 

we may assume that b is odd and thus we may assume b ≥ 3 and 3 ≥ 2. For all % ∈ +, 
' ∈ +['$(] and L ∈ +[,], by identity (19) and by Lemma 3.1.7, we have  
 
[%, ']L = (%')L − ('%)L = %('L) − '(%L) = %('L) − %(L') + %(L') − '(%L) 
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 = %('L) − %(L') + (%L)' − '(%L) = %[', L] + [%L, '] 
  
 ∈ ++['",$(] + [U`(+[,]), +['$(]] ⊆ U`(+['",$(]). 
 

 The proof is completed.  
We also note that if 3 and b are even then U`(+['])U`(+[,]) ⊈ U`(+['",$(]) in 

general for associative algebras [61]. Since associative algebras are assosymmetric 
algebras, we know that if 3 and b are even then U`(+['])U`(+[,]) ⊈ U`(+['",$(]) in 
general for assosymmetric algebras. 

 
3.2  The algebraic classification of nilpotent assosymmetric algebras 

 The results of this subsection were published in [41 – 43]. 
Using the classification of all 2-dimensional algebras [62], it is easy to check 

that all 2-dimensional assosymmetric algebras are associative. The present section 
presents the algebraic classification of 4-dimensional complex nilpotent 
assosymmetric algebras. 

The variety of assosymmetric algebras is defined by the following identities of 
right- and left-symmetric:  

 
 (%, ', L) = (%, L, '), 		 (%, ', L) = (', %, L),  
 

where (%, ', L) = (%')L − %('L). 
Central extensions are a crucial aspect of our method for classifying 

assosymmetric nilpotent algebras. The central extensions of Lie and non-Lie algebras 
have been extensively studied over the years and have been used to classify various 
types of algebras [36, 63, 64]. Firstly, Skjelbred and Sund devised a method for 
classifying nilpotent Lie algebras employing central extensions [36]. This method has 
been utilized to describe all non-Lie central extensions of 4-dimensional Malcev 
algebras [63], all anticommutative central extensions of 3-dimensional 
anticommutative algebras [65], and all central extensions of 2-dimensional algebras 
[66].  

 
3.2.1  Method of classification of nilpotent algebras 
We now present an adaptation of the Skjellbred-Sund method for the 

classification of nilpotent asymmetric algebras. This method has been used to classify 
various varieties of algebras and has been explained in works such as [63, p. 34], [66]. 
We give only some important definitions. For more detailed information, the interested 
reader is referred to these sources. We will also use their notation. 

Define an assosymmetric algebra (+, ⋅	) over the field of complex numbers ℂ 
	and let B be a vector space over ℂ. The set of all bilinear maps C: + × + ⟶ B 
satisfying the condition that  

 
 C(%', L) − C(%, 'L) = C(%L, ') − C(%, L'), 
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 C(%', L) − C(%, 'L) = C('%, L) − C(', %L). 
 

forms a ℂ-linear space, which is denoted as Z+(+, B).	These maps are referred as  
cocycles. Given a linear map [ from + to B, we can define cocycle ¡[: + × + ⟶ B 
with ¡[(%, ') = [(%'). Coboundaries are defined as the elements of the linear 
subspace B+(+, B) = {C = ¡[	 ∶ [ ∈ H\f(+, B)}. The  second cohomology space 
H+(+, B) is defined to be the quotient space Z+(+, B)/B+(+, B). 

Let AJK(+) be the automorphism group of the assosymmetric algebra + and let 
z ∈ AJK(+). Every C ∈ Z+(+, B) defines zC(%, ') = Cdz(%), z(')e, with zC ∈
Z+(+, B). It is easily checked that AJK(+) acts on Z+(+, B), and that B+(+, B) is 
invariant under the action of AJK(+). So, we have that AJK(+) acts on H+(+, B). 

Let + be an assosymmetric algebra of dimension f < 4 over ℂ, B a ℂ-vector 
space of dimension 4 − f and C a cocycle, and consider the direct sum +S = +⊕ B 
with the bilinear product “ [−, −]T.” defined by [% + %0, ' + '0]T. = %' + C(%, ') for 
all %, ' ∈ +, %0, '0 ∈ B. It is straightforward that +S is an assosymmetric algebra if and 
only if C ∈ Z+(+, B); it is called an (4 − f)- dimensional central extension of + by B. 

We also call the set A44(C) = {% ∈ +: C(%, +) + C(+, %) = 0} the  annihilator 
of C. We recall that the  annihilator of an algebra + is defined as the ideal A44(+) =
{% ∈ +: %+ + +% = 0}. Observe that A44(+S) = (A44(C) ∩ A44(+)) ⊕ B. 

Definition 3.2.1 [63, p. 35] Let + be an algebra and U be a subspace of +44(+). 
If + = +2⊕ U then U is called an  annihilator component of +.  

Definition 3.2.2 [63, p. 35] A central extension of an algebra + without 
annihilator component is called a  non-split central extension.  

The following result is fundamental for the classification method. For the proof, 
we refer the reader to Lemma 5 in [63, p. 35]. 

Lemma 3.2.3 Let + be an 4-dimensional assosymmetric algebra such that 
`3f		+44(+) = f ≠ 0. Then there exists, up to isomorphism, a unique (4 − f)-
dimensional assosymmetric algebra +′ and a bilinear map C ∈ 2+(+, B) with 
+44(+) ∩ +44(C) = 0, where B is a vector space of dimension m, such that + ≅ +′S 
and +/+44(+) ≅ +′.  

Now, we seek a condition on the cocycles to know when two (4 − f)-central 
extensions are isomorphic. Let us fix a basis {(, … , {U of B, and C ∈ Z+(+, B). Then C 
can be uniquely written as C(%, ') = ∑U'8( C'(%, '){', where C' ∈ Z+(+, ℂ). It holds 
that C ∈ B+(+, B) if and only if all C' ∈ B+(+, ℂ), and it also holds that A44(C) =
A44(C() ∩ A44(C+)…∩ A44(CU). Furthermore, if A44(C) ∩ A44(+) = 0, then +S 
has an annihilator component if and only if [C(], [C+], … , [CU] are linearly dependent in 
H+(+, ℂ) (see [63, Lemma 13]). 

Recall that, given a finite-dimensional vector space B over ℂ, the  Grassmannian 
G/(B) is the set of all t-dimensional linear subspaces of B. Let GUdH+(+, ℂ)e be the 
Grassmannian of subspaces of dimension Å in H+(+, ℂ). For W =

⟨[C(], [C+], … , [CU]⟩ ∈ GUdH
+(+, ℂ)e and z ∈ AJK(+), define zW =

⟨[zC(], [zC+], … , [zCU]⟩. It holds that zW ∈ GUdH
+(+, ℂ)e, and this induces an action 
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of AJK(+) on GUdH+(+, ℂ)e. We denote the orbit of W ∈ GUdH
+(+, ℂ)e under this 

action by O]7(W). Let  
 

W( = ⟨[C(], [C+], … , [CU]⟩,W+ = ⟨[À(], [À+], … , [ÀU]⟩ ∈ GUdH
+(+, ℂ)e. 

 
Similarly to Lemma 15 in [63, p. 41], in case W( = W+, it holds that  
 

Ã

U

'8(

A44(C') ∩ A44(+) =Ã

U

'8(

A44(À') ∩ A44(+), 

 
and therefore the set  
 

TU(+) = ŒW = ⟨[C(], [C+], … , [CU]⟩ ∈ GUdH
+(+, ℂ)e:Ã

U

'8(

A44(C') ∩ A44(+) = 0œ 

 
is well defined, and it is also stable under the action of AJK(+) (see Lemma 16  in [63, 
p. 41]). Now, let B be an Å-dimensional linear space, and let us denote by E(+, B) the 
set of all non-split Å-dimensional central extensions of + by B. We can write  

 

E(+, B) = Œ+S: C(%, ') =p

U

'8(

C'(%, '){'				and				⟨[C(], [C+], … , [CU]⟩ ∈ TU(+)œ. 

 
Finally, we have main lemma, which can be proved as  Lemma 17 in [63]. 

Lemma 3.2.4 [63, p. 41] Let +S, +V ∈ —(+, B). Suppose C(%, ') =
∑U'8( C'(%, '){' and À(%, ') = ∑U'8( À'(%, '){'. Then the assosymmetric algebras +S 
and +V are isomorphic if and only if  

 
 O]7⟨[C(], [C+], … , [CU]⟩ = O]7⟨[À(], [À+], … , [ÀU]⟩. 
 
Then, it exists a bijective correspondence between the set of AJK(+)-orbits on 

TU(+) and the set of isomorphism classes of E(+, B). Consequently, we have a 
procedure that allows us, given an assosymmetric algebra +′ of dimension 4 − Å, to 
construct all non-split central extensions of +′. 

Let +′ be an assosymmetric algebra of dimension 4 − Å. Then: 
    1.  Compute base for 2+(+′, ℂ);  
    2.  Compute base for >+(+′, ℂ) and G+(+′, ℂ);  
    3.  Compute +JK(+′);  
    4.  Compute base for +44(+′) and +44(+′) ∩ +44(C);  
    5.  Compute AJK(+′)-orbits on "1(+′);  
    6.  Construct a new finite-dimensional nilpotent assosymmetric algebra 

associated with a representative of each orbit.  
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Let + be an assosymmetric algebra and fix a basis {(, {+, … , {%. We define the 
bilinear form Δ',: + × + ⟶ ℂ by Δ',({= , {1) = ¡'=¡,1. Then the set òΔ',: 1 ≤ 3, b ≤ 4ô 
is a basis for the linear space of the bilinear forms on +, and in particular, every C ∈
Z+(+, B) can be uniquely written as C = ∑(J',,J% P',Δ',, where P', ∈ ℂ. 

We now describe algorithms to handle steps from 1 to 4. The remaining two 
steps are worked out by hand. 

Let +′ be an algebra with basis {{': 3 = 1,2, … , 4}. We use the following 
notations: Δ',, is the bilinear form Δ',,: +′ × +′ ⟶ ℂ such that  

 
 Δ',,({= , {/) = ¡'=¡,/. (34) 
 

 The set {Δ',,: 1 ≤ 3, b ≤ 4} is the basis of 2+(+′, ℂ). Every C ∈ 2+(+′, ℂ) can be 
uniquely written as C = ∑%(J',,J% i',,Δ',, where i',, ∈ ℂ. 

Now, we give algorithms to compute the above-mentioned steps. The first 
algorithm shows how to compute 2+(+′, ℂ) given the dimension, the product rule, and 
the polynomial identities. It amounts to defining the symbolic equations and calling the 
symbolic solver from the relevant programming language. 

 
 

 
 

Figure 1 – Computation the basis for the 2+(+′, ℂ) 
 

The next algorithm uses outcomes of Algorithm 1 (Figure 1) together with the 
same inputs. In this case we aim to compute bases for >+(+′, ℂ) and G+(+′, ℂ). It does 
not require any tricks to obtain a basis for >+(+′, ℂ) but simply write them down 
manually from the given polynomial identities. In terms of coding, this means asking 
the programming language to read the coefficients of polynomial expressions. As for 
the second part, we recall that >+(+′, ℂ) ⊂ 2+(+′, ℂ) and G+(+′, B) = 2W

+(+′, B)/
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>+(+′, B). Thus, the problem of finding a basis for G+(+′, ℂ) is equivalent to 
completing the basis of 2+(+′, ℂ) given the basis of >+(+′, ℂ). 

 
Figure 2 – Сomputation the bases for >+(+′, ℂ) and G+(+′, ℂ) 

 
Computing the +JK(+′), Algorithm 3 (Figure 3), is one of the main steps in the 

above-described method and the one with a large computational cost. We may 
represent an automorphism with an 4 × 4 invertible square matrix that respects the 
bilinear product rule. This requires defining a symbolic matrix and defining a system 
of symbolic equations and finally calling the solve function. 

 

 
 

Figure 3 – Finding the automorphism group 
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The next three algorithms are allocated for step 4 to compute annihilators. The 
Algorithm 4 (Figure 4) computes the action of the automorphism group on G+(+′, ℂ) 
and uses outcomes of Algorithm 2 (Figure 2) and Algorithm 3 (Figure 3).  Action of 
automorphism group defined by zX ∗ Ö ∗ z where z ∈ +JK(+′) and Ö is matrix form 
of G+(+′, ℂ). 

 
Figure 4 –  Action of the automorphism group on G+(+′, ℂ) 

 
Next algorithm uses Algorithm 5 (Figure 5) to compute bases for +44(+′). 

Again one needs to define the system of polynomial equations and call the solver. 
 

 
Figure 5 – Finding basis of annihilator 

 
Finally, the last algorithm below (Figure 6) uses outcome of Algorithm 5 (Figure 

5) and gives conditions of +44(+′) ∩ +44(C) = 0: 
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Figure 6 – Intersection of +44(+′) and +44(C)  
 
3.2.2  The central extensions of low dimensional nilpotent assosymmetric 

algebras. 
We distinguish two main classes of assosymmetric algebras: the “pure” and the 

“non-pure” ones. By the non-pure ones, we mean those satisfying the identities 
(%')L = 0 and %('L) = 0; the pure ones are the rest. 

These “trivial” algebras can be considered in many varieties of algebras defined 
by polynomial identities of degree 3 (associative, Leibniz, Zinbiel, etc.), and they can 
be expressed as central extensions of suitable algebras with zero product. Those with 
dimension 4 are already classified: the list of the non-anticommutative ones can be 
found in [67], and there is only one nilpotent and anticommutative algebra. 

Theorem 3.2.5  Let + be a nonzero 4-dimensional complex nilpotent “pure” 
assosymmetric algebra. Then, + is isomorphic to one of the algebras listed in Table 
A.1 in Appendix A.  

Remark 3.2.6 Let + be a 4-dimensional nilpotent non-associative 
assosymmetric algebra. Then + is isomorphic to one algebra from the following list  

 
+2(
5 , +2+

5 (α ≠ 1), +23
5 , +25

5 (α ≠ 1), +2Y
5 (α ≠ 1), +2Z

5 , +2Q
5 , +2R

5 , +(2
5 , 

 
+((
5 , +(+

5 , +(3
5 , +(5

5 , +([
5 , +(Y

5 , +(Z
5 , +(Q

5 (: ≠ 1), +(R
5 , ++2

5 . 
 

 Proof of Theorem 3.2.5. There are no nontrivial 1-dimensional nilpotent 
assosymmetric algebras, and there is only one nontrivial 2-dimensional nilpotent 
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assosymmetric algebra (namely, the non-split central extension of the 1-dimensional 
algebra with zero product):  

 +2(
+∗ : (N()+,( : {({( = {+.  

From this algebra, we construct the 3-dimensional nilpotent assosymmetric algebra 
+2(
3∗ = +2(

+∗ ⊕ℂ{3. Also, the reference [66, p. 10] gives the description of all central 
extensions of +2(+∗  and N+. Choosing the assosymmetric algebras between them, we 
have the classification of all non-split 3-dimensional nilpotent assosymmetric algebras: 

 

 

+2+
3∗ : (N+)3,( : {({( = {3, {+{+ = {3;

+23
3∗ : (N+)3,+ : {({+ = {3, {+{( = −{3;

+25
3∗(α) : (N+)3,3 : {({( = α{3, {+{( = {3, {+{+ = {3;

+2(
3 : (+2(

+∗)3,( : {({( = {+, {+{( = {3;

+2+
3 (α) : (+2(

+∗)3,+ : {({( = {+, {({+ = {3, {+{( = α{3.

 

 
Now we consider 1-dimensional central extensions of 3-dimensional nilpotent 
assosymmetric algebras. In the following table, we give the description of the second 
cohomology space of 3-dimensional nilpotent assosymmetric algebras. 
 
Table 1 – the cohomology space of 3-dimensional nilpotent assosymmetric algebras 

 
+ Z+(+) B+(+) H+(+) 
+2(
+∗  〈Δ!!, Δ!", Δ!#, Δ"!, Δ#!, Δ##〉 〈Δ!!〉 〈[Δ!"], [Δ!#], [Δ"!], [Δ#!], [Δ##]〉 
+2+
3∗  〈Δ!!, Δ!", Δ"!, Δ""〉 〈Δ!! + Δ""〉 〈[Δ!"], [Δ"!], [Δ""]〉 
+23
3∗  〈Δ!!, Δ!", Δ"!, Δ""〉 〈Δ!" − Δ"!〉 〈[Δ!!], [Δ"!], [Δ""]〉 

+25
3∗(:

≠ 1) 
〈Δ!!, Δ!", Δ"!, Δ""〉 〈)Δ!! + Δ"! + Δ""〉 〈[Δ!"], [Δ"!], [Δ""]〉 

+25
3∗(1) 〈Δ!!, Δ!", Δ"!, Δ#! + Δ"#,Δ"", Δ!# − Δ#" + Δ"# 〉 〈Δ!! + Δ"! + Δ""〉 〈[Δ!"], [Δ"!], [Δ#!] + [Δ"#],[Δ""], [Δ!#] − [Δ#"] + [Δ"#]〉 
+2(
3  〈Δ!!, Δ!", Δ"!, Δ!# − Δ"" − 2Δ#!〉 〈Δ!!, Δ"!〉 ⟨[Δ!"], [Δ!#] − [Δ""] − 2[Δ#!]⟩ 

+2+
3 (:) 

〈
Δ!!, Δ!", Δ"!,
() − 2)Δ!# + (1 − 2))Δ#! +
() − )" − 1)Δ""

〉  〈Δ!!,Δ!" + )Δ"!〉 〈
[Δ/0],
(' − 2)[Δ01] + (1 − 2')[Δ10] +
(' − '/ − 1)[Δ//]

〉 

 
Remark 3.2.7 From the description of the cocycles of the algebras +2+3∗ , +233∗  and 

+25
3∗(:)&\(, it follows that the 1-dimensional central extensions of these algebras are 

2-dimensional central extensions of 2-dimensional nilpotent assosymmetric algebras. 
Thanks to [66, p. 18-22] we have the description of all non-split 2-dimensional central 
extensions of 2-dimensional nilpotent assosymmetric algebras:  

 

 +23
5 : (+2(

+∗)5,( : {({( = {+, {({+ = {5, {+{( = {3. 

Then, in the following we study the central extensions of the other algebras.  
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1) Central extensions of ‘]^_∗ . Since the second cohomology spaces and 
automorphism groups of +2(3∗  and ’2(

3∗ (from [11]) coincide, these algebras have 
the same central extensions. Therefore, from [11, p. 19] we have all the new 4-
dimensional nilpotent assosymmetric algebras constructed from +2(3∗ :  

 
+25
5 (:), +2[

5 , +2Y
5 (:)&\2, +2Z

5 , +2Q
5 , +2R

5 . 
 

The multiplication tables of these algebras can be found in Appendix A. 
2) Central extensions of ‘]`_∗(÷). Let us use the following notations:  

 
 ∇(= [Δ(+], 	∇+= [Δ+(], ∇3= [Δ++],	 
 

∇5= [Δ(3] − [Δ3+] + [Δ+3], ∇[= [Δ3(] + [Δ+3]. 
 

The automorphism group of +253∗(1) consists of invertible matrices of the form 
 

 z = ÿ

% ' 0

−' % − ' 0

L J %+ − %' + '+
Ÿ. 

 
Since  
 

 zX ⁄

0 :( :5
:+ :3 :5 + :[
:[ −:5 0

¤z = ⁄

:∗ :(
∗ :5

∗

:∗ + :+
∗ :∗ + :3

∗ :5
∗ + :[

∗

:[
∗ −:5

∗ 0
¤, 

 
we have that the action of AJKd+253∗(1)e on the subspace ‹∑['8( :'∇'› is given by 
‹∑['8( :'

∗∇'›, where 
 

:(
∗ = %(% − '):( − '

+:+ − '(% − '):3 + (J − L)(% − '):5 − '(J − L):[;

:+
∗ = '(% − '):( + %

+:+ − %':3 + J(':5 + %:[);

:3
∗ = '(2% − '):( + '(2% − '):+ + %(% − 2'):3 + (J' − %L):5 +

+dJ% − L(% − ')e:[;

:5
∗ = (%+ − %' + '+)d(% − '):5 − ':[e;

:[
∗ = (%+ − %' + '+)(':5 + %:[).

 

 
The element :(∇( + :+∇+ + :3∇3 gives a central extension of a 2-dimensional 
algebra. From here, we have the following new cases: 

    1.  :[ = 0, :5 ≠ 0. Then   
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        (a) If :+ = 0, then choosing % = (

√&(' , ' = 0, J =
7(&'$&!)

&(
, L =

7&'
&(
, we 

have the representative ⟨∇5⟩. 
        (b) If :+ ≠ 0, then choosing % = &$

&(
, ' = 0, J =

7(&'$&!)
&(

, L =
7&'
&(
, we 

have the representative⟨∇+ + ∇5⟩. 
    2.  :[ ≠ 0 and :5+ + :5:[ + :[+ ≠ 0. Then by chossing % = −

&(
&2
, ' =

1, J = 0, L = 0 we have the case (1). 
    3.  :[ ≠ 0 and :5+ + :5:[ + :[+ = 0. Then :[ = ú:5, where ú = $(±√3'

+
. 

Now we have following cases.  
(a) If :( + :+ − :3(1 + ú+) ≠ 0, then by choosing  

 

% =
:( + :+ − :3(1 + ú

+)

:[
, ' = 0, J = −

%:+

:[
, L =

%(ú:( − :+)

:[
, 

 
we have the representative ⟨∇3 + ∇5 + ú∇[⟩. 

(b) If :( + :+ − :3(1 + ú+) = 0, then by choosing  
 

% =
1

√:5
' , ' = 0, J = −

%:+

:[
, L =

%(ú:( − :+)

:[
, 

 
we have the representative ⟨∇5 + ú∇[⟩. 

Now, we have the following new algebras constructed from +253∗(1): 
 
+(2
5 :  {({( = {3  

 {+{3 = {5  
{({3 = {5  
{3{+ = −{5.  

 {+{( = {3   {+{+ = {3  

+((
5 :  {({( = {3  

 {+{3 = {5  
 {({3 = {5  
 {3{+ = −{5;  

 {+{( = {3 + {5   {+{+ = {3  

+(+
5 :  {({( = {3  

 {+{3 =
("√3'

+
{5  

 {({3 = {5  
 {3{( =

$("√3'

+
{5 

 {+{( = {3  
 {3{+ = −{5;  

 {+{+ = {3 + {5  

+(3
5 :  {({( = {3 

 {+{3 =
("√3'

+
{5  

 {({3 = {5  
 {3{( =

$("√3'

+
{5 

 {+{( = {3  
 {3{+ = −{5; 

 {+{+ = {3  

+(5
5 :  {({( = {3  

 {+{3 =
($√3'

+
{5  

 {({3 = {5  
 {3{( =

$($√3'

+
{5  

 {+{( = {3 
 {3{+ = −{5;  

 {+{+ = {3 + {5  
  

+([
5 :  {({( = {3  

 {+{3 =
($√3'

+
{5  

 {({3 = {5  
 {3{( =

$($√3'

+
{5  

 {+{( = {3  
 {3{+ = −{5.  

 {+{+ = {3  
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3) Central extensions of ‘]^_ . Let us use the following notations:  

 

 ∇(= [Δ(+], ∇+= [Δ(3] − [Δ++] − 2[Δ3(]. 
 

The automorphism group of +2(3  consists of invertible matrices of the form 
 

 z = ÿ

% 0 0

' %+ 0

L %' %3
Ÿ. 

 
Since  
 

 zX ⁄

0 :( :+
0 −:+ 0

−2:+ 0 0
¤z = ⁄

:∗ :(
∗ :+

∗

:∗∗ −:+
∗ 0

−2:+
∗ 0 0

¤, 

 
we have that the action of AJK(+2(3 ) on the subspace ‹∑+'8( :'∇'› is given by 
‹∑+'8( :'

∗∇'›, where 
 
 :(

∗ = %3:(; 						:+
∗ = %5:+. 

 
It is straightforward that the elements :(∇( lead to central extensions of 2-dimensional 
algebras. The new cases are following: 

    1.  :( ≠ 0, :+ ≠ 0. Choosing % = &!
&$

, we have the representative ⟨∇( + ∇+⟩. 

    2.  :( = 0, :+ ≠ 0. Choosing % = (

√&$( , we have the representative ⟨∇+⟩.  

We have the following new algebras constructed from +2(3 : 
 
+(Y
5 :  {({( = {+   {+{( = {3   {({+ = {5   {({3 = {5  

 {+{+ = −{5   {3{( = −2{5;     

+(Z
5 :  {({( = {+   {+{( = {3   {({3 = {5   {+{+ = −{5  

 {3{( = −2{5.     
 

4) Central extensions of ‘]c_ (fl). Let us use the following notations:  
 

 ∇(= [Δ+(], ∇+= (: − 2)[Δ(3] + (: − :
+ − 1)[Δ++] + (1 − 2:)[Δ3(]. 

 
The automorphism group of +2+3 (:) consists of invertible matrices of the form 
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 z = ÿ

% 0 0

' %+ 0

L (: + 1)%' %3
Ÿ. 

 
Since  
 

 zX ⁄

0 0 (: − 2):+

:( (: − :+ − 1):+ 0

(1 − 2:):+ 0 0
¤z = 

 

 ⁄

:∗∗ :∗ (: − 2):+
∗

::∗ + :(
∗ (: − :+ − 1):+

∗ 0

(1 − 2:):+
∗ 0 0

¤, 

 
we have that the action of AJKd+2+3 (:)e on the subspace ‹∑+'8( :'∇'› is given by 
‹∑+'8( :'

∗∇'›, where 
 
 :(

∗ = %3:( − 3(: + 1):%
+':+; 	:+

∗ = %5:+. 
 

The element :(∇( gives a central extension of a 2-dimensional algebra, then we will 
consider only cases with :+ ≠ 0. We find the following new cases: 

    1.  : ≠ 0,−1, then choosing % = −
(

√&$(  and ' = 7&!
3(&"()&&$

, we have the 
representative ⟨−∇+⟩. 

    2.  : = 0 or : = −1 then: 
        (a) if :( ≠ 0, then choosing % = &!

&$
, we have the representative ⟨∇( + ∇+⟩.  

        (b) if :( = 0, then choosing % = (

√&$( , we have the representative ⟨∇+⟩.  
Now we have all the new 4-dimensional nilpotent assosymmetric algebras 

constructed from +2+3 (:): +(Q5 (:),	+(R5 ,	++25 	(see Table A.1 in Appendix A). 
Summarizing above results the Theorem 3.2.6 is proved. 
Another main result of the present section is the following theorem: 
Theorem 3.2.8  Let + be a 5- or 6-dimensional complex one-generated nilpotent 

assosymmetric algebra, then + is isomorphic to an algebra from the Table A.3 or Table 
A.5 in Appendix A. 

From Theorem 3.2.5  we have a description of all 2-, 3- and 4-dimensional one-
generated nilpotent assosymmetric algebras: 

 
 
 
 



 62 

Table 2 – 2-, 3- and 4-dimensional one-generated nilpotent assosymmetric algebras 
 

 
Proof Theorem 3.2.8. We consider 2-dimensional central extensions of 3-

dimensional one-generated algebras.The second cohomology spaces of algebras 
‘]^
_ , ‘]c

_ (fl) given in [43]. Therefore, 2-dimensional central extensions of these 
algebras gives the following two algebras: 

 
+2(
[ : {({( = {+ {({+ = {5  {({3 = {[  

{+{( = {3  {+{+ = −{[  {3{( = −2{[;  
+2+
[ (:): {({( = {+  {({+ = {3  {({3 = (: − 2){[  

{+{( = :{3 + {5  {+{+ = (: − :+ − 1){[  {3{( = (1 − 2:){[.  
 
Remark 3.2.9 Extensions of the algebras +2+5 , +235 , +255 (:)&\(, +2[5  and +2Y5  

give algebras with 2-dimensional annihilator. Then, in the following subsections we 
study the central extensions of the other algebras.  

All multiplication tables of 4-dimensional one-generated nilpotent 
assosymmetric algebras is given in Table A.1 (see, Appendix A). All relevant details 
about coboundaries, cocycles, and second cohomology spaces for five-dimensional 
one-generated nilpotent assosymmetric algebras were obtained using the code 
specified in [41], and can be found in Table A.2 (see, Appendix A). 
1) Central extensions of ‘]^` . Let us use the following notations:  

 
∇(= [Δ(3] + [Δ5(], ∇+= [Δ(5] − [Δ3(] − [Δ5(], ∇3= [Δ++] + 2[Δ3(] + [Δ5(]. 
 

The automorphism group of +2(5  consists of invertible matrices of the form 

+2(
+   {({( = {+    

+2(
3   {({( = {3   {+{( = {3    

+2+
3 (:)  {({( = {+   {({+ = {3   {+{( = :{3  

+2(
5   {({( = {+   {({+ = {5   {+{( = {3  

+2+
5  

 {({( = {+ 	{+{( = {3 {({+ = {5 {+{+ = −{5  {({3 = {5  
 {3{( = −2{5 

+23
5  

 {({( = {+ 
 {+{+ = −{5 

 {({3 = {5  
 {3{( = −2{5 

 {+{( = {3  
 

+25
5 (:) 

 {({( = {+ 
 {+{( = :{3   

 {({+ = {3  
 {+{+ = (:+ − : + 1){5 

 {({3 = (2 − :){5  
 {3{( = (2: − 1){5 

+2[
5  

 {({( = {+  
  {+{( = {5 

 {({+ = {3 
 {+{+ = −{5  

 {({3 = −2{5  
 {3{( = {5 

+2Y
5  

 {({( = {+  
 {+{( = −{3 + {5 

 {({+ = {3  
 {+{+ = −3{5 

 {({3 = −3{5 
  {3{( = 3{5  
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 z =

⎝

⎛

% 0 0 0

' %+ 0 0

L %' %3 0

K %' 0 %3⎠

⎞. 

 
Since  
 

zX

⎝

⎜

⎛

0 0 :( :+
0 :3 0 0

−:+ + 2:3 0 0 0

:( − :+ + :3 0 0 0

⎠

⎟

⎞
z =

⎝

⎜

⎛

:∗ :∗∗ :(
∗ :+

∗

:∗∗∗ :3
∗ 0 0

−:+
∗ + 2:3

∗ 0 0 0

:(
∗ − :+

∗ + :3
∗ 0 0 0

⎠

⎟

⎞
, 

 
we have that the action of AJK(+2(5 ) on the subspace ‹∑3'8( :'∇'› is given by 
‹∑3'8( :'

∗∇'›, where 
 
 :(

∗ = %5:(, :+
∗ = %5:+, :3

∗ = %5:3. 
 

 For 1-dimensional central extensions we have the following new cases: 
    1.  If :( ≠ 0, :+ = 0, :3 = 0, then % = (

√&!( , we have the representative ⟨∇(⟩; 

    2.  If :+ ≠ 0, :3 = 0, then % = (

√&$( , : =
&!
&$

 we have the representative 
⟨:∇( + ∇+⟩; 

    3.  If :3 ≠ 0, then % = (

d&'( , : =
&!
&'
, q =

&$
&'

 we have the representative 

⟨:∇( + q∇+ + ∇3⟩. 
From here, we have new 5-dimensional one generated assosymmetric algebras 

constructed from +2(5 : 
 

+23
[ : {({( = {+ 

{5{( = {[; 
{({+ = {5 {+{( = {3 {({3 = {[ 

+25
[ (:): {({( = {+ 

{({5 = {[ 
{({+ = {5 
{3{( = −{[ 

{+{( = {3 
{5{( = (: − 1){[; 

{({3 = :{[ 

+2[
[ (:, q): {({( = {+ 

 {({5 = q{[  
{({+ = {5 
{+{+ = {[ 

{+{( = {3 
{3{( = (2 − q){[ 

{({3 = :{[  
 {5{( = (: − q + 1){[. 

 
For 2-dimensional central extensions we consider the vector space generated by 

the following two cocycles 
 

C( = :(∇( + :+∇+ + :3∇3, 



 64 

 
C+ = q(∇( + q+∇+. 

  
Here we have the following cases: 

    1.  If :3 = 0, then we have the representative ⟨∇(, ∇+⟩; 
    2.  If :3 ≠ 0, q( ≠ 0, q+ = 0, then we have the representative 

⟨∇(, :∇+ + ∇3⟩; 
    3.  If :3 ≠ 0, q+ ≠ 0, then we have the representative ⟨:∇( + ∇+, q∇( + ∇3⟩. 
We have the following new 6-dimensional one-generated nilpotent 

assosymmetric algebras constructed from +2(5 : +2(Y ,	+2+Y (:),		+23Y (:, q)	(see Table A.5 
in Appendix A). 
2) Central extensions of ‘]`` (÷). Let us use the following notations: 

 
 ∇(= [Δ+(], ∇+= [Δ(5] + [Δ+3] + [Δ3+] + [Δ5(]. 
 

The automorphism group of +255 (1) consists of invertible matrices of the form 
 

 z =

⎝

⎛

% 0 0 0

' %+ 0 0

L 2%' %3 0

K 2%L + '+ 3'%+ %5⎠

⎞. 

 
Since  
 

 zX

⎝

⎜

⎛

0 0 0 :+
:( 0 :+ 0

0 :+ 0 0

:+ 0 0 0

⎠

⎟

⎞
z =

⎝

⎜

⎛

:∗∗∗ :∗ :∗∗ :+
∗

:∗ + :(
∗ :∗∗ :+

∗ 0

:∗∗ :+
∗ 0 0

:+
∗ 0 0 0

⎠

⎟

⎞
, 

 
we have that the action of AJKd+255 (1)e on the subspace ‹∑+'8( :'∇'› is given by 
‹∑+'8( :'

∗∇'›, where 
 
 :(

∗ = %3:(, :+
∗ = %[:+. 

 
For 1-dimensional central extensions note that if :+ = 0 then we obtain algebras 

with 2-dimensional annihilator. Therefore, we have two representatives ⟨∇+⟩ and 
⟨∇( + ∇+⟩ depending on whether :( = 0 or not. 

We have the following new 5-dimensional nilpotent assosymmetric algebras 
constructed from +255 (1): +2Y[  and +2Z[ 	(see Table A.1 in Appendix A). 

For 2-dimensional central extensions we have only one new 6-dimensional 
nilpotent assosymmetric algebras constructed from +255 (1): 
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 +25Y   : {({( = {+ {({+ = {3 {({3 = {5 {({5 = {[ {+{( = {3 + {Y  
   {+{+ = {5 {+{3 = {[ {3{( = {5 {3{+ = {[ {5{( = {[. 
 
Summarizing results of the previous sections, we have the first part of Theorem 2.7. 

All multiplication tables of 5-dimensional one-generated nilpotent 
assosymmetric algebras is given in Table A.3 (see, Appendix A). All necessary 
information about coboundaries, cocycles and second cohomology spaces of 5-
dimensional one-generated nilpotent assosymmetric algebras were calculated by the 
code in [41] and given in Table A.4 (see, Appendix A). 

Remark 3.2.11 Extensions of the algebras +2([ , +2+[ (:)&\(, +23[ , +25[ (:) and 
+2[
[ (:, q)

&\
!
$eK±d$+"YK$3K

$f give algebras with 2-dimensional annihilator. Then, in 

the following subsections we study the central extensions of the other algebras.  
3) Central extensions of ‘]cg (÷). Let us use the following notations:  

 

 ∇(= [Δ(3] − [Δ5(], ∇+= [Δ(5] + [Δ3(] − [Δ5(],	 
 

∇3= [Δ([] − [Δ+3] − [Δ3+] + [Δ[(]. 
 

The automorphism group of +2Z[  consists of invertible matrices of the form 
 

 z =

⎝

⎜⎜

⎛

% 0 0 0 0

' %+ 0 0 0

L 2%' %3 0 0

K %' 0 %3 0

m −'+ − 2%L −3%+' 0 %5⎠

⎟⎟

⎞
. 

 
Since  
 

zX

⎝

⎜
⎜

⎛

0 0 :( :+ :3
0 0 −:3 0 0

:+ −:3 0 0 0

−:( − :+ 0 0 0 0

:3 0 0 0 0

⎠

⎟
⎟

⎞

z = 

 

⎝

⎜

⎜

⎛

:∗∗∗∗ :∗∗∗ :(
∗ + :∗ :+

∗ :3
∗

:∗∗ :∗ −:3
∗ 0 0

:+
∗ + :∗ −:3

∗ 0 0 0

−:(
∗ − :+

∗ 0 0 0 0

:3
∗ 0 0 0 0

⎠

⎟

⎟

⎞
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we have that the action of AJKd+2Z[ e on ‹∑3'8( :'∇'› is given by ‹∑3'8( :'∗∇'›, where 
 
 :(

∗ = %5:(, :+
∗ = %5:+, :3

∗ = %[:3. 
 

We have the following case: 
    1.  If :+ ≠ 0, then choosing % = &$

&'
 we have the representative 

⟨:∇( + ∇+ + ∇3⟩; 
    2.  If :+ = 0, we have two representatives ⟨∇3⟩ and ⟨∇( + ∇3⟩ depending on 

whether :( = 0 or not.  
Consequently, we have the following algebras from +2+[ (1): 

 
4) Central extensions of ‘]gg (fl, Á). Here we will consider the special cases for : =

(

+
dq ± È−2 + 6q − 3q+e. 

The automorphism group of +2[[ (:, q) consists of invertible matrices of the form  
 

z =

⎝

⎜
⎜
⎜
⎜

⎛

% 0 0 0 0
;

7
%+ 0 0 0

L ' %3 0 0

K ' 0 %3 0

l
7'D(+$K"&)h"(("&)PG";$

7$
(: − 2q + 4)%' (: + q + 1)%' %5

⎠

⎟
⎟
⎟
⎟

⎞

. 

 
Let use the following notations:  

+$%
& ()): {({( = {+ {({+ = {3 {({3 = −{[ + :{Y 

{({5 = {Y  {({[ = {Y {+{( = {3 + {5  
{+{+ = −{[ {+{3 = −{Y {3{( = −{[ + {Y 
{3{+ = −{Y {5{( = −(: + 1){Y {[{( = {Y; 

+2Y
Y : {({( = {+ {({+ = {3 {({3 = −{[ + {Y 

{({[ = {Y  {+{( = {3 + {5  {+{+ = −{[ 
{+{3 = −{Y {3{( = −{[ {3{+ = −{Y 
{5{( = −{Y {[{( = {Y;  

+2Z
Y : {({( = {+ {({+ = {3 {({3 = −{[ 

{({[ = {Y  {+{( = {3 + {5   {+{+ = −{[  
{+{3 = −{Y {3{( = −{[ {3{+ = −{Y 
{[{( = {Y.   
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∇(= [Δ(5] − [Δ3(] − [Δ5(], ∇+= [Δ(3] + [Δ5(], 

 
∇3= (2q − 1)[Δ([] + (2:q − 2q + 1)[Δ+3] + (: + 2q

+ − 3q + 1)[Δ+5] + 
 

(3: − 2:q + 2q+ − 3q + 1)[Δ3+] + (2: − 2:q + 2q − 1)[Δ5+] 
 

+(2: − 2q + 1)[Δ[(]. 
 
So,  

 

!!

⎝

⎜⎜
⎜
⎛
0 0 &" &# (2) − 1)&$
0 0 (2&) − 2) + 1)&$ (& + 2)" − 3) + 1)&$ 0
−&# (3& − 2&) + 2)" − 3) + 1)&$ 0 0 0
−&# + &" (2& − 2&) + 2) − 1)&$ 0 0 0
(2& − 2) + 1)&$ 0 0 0 0

⎠

⎟⎟
⎟
⎞
! = 

 
 =

⎝

⎜⎜
⎜
⎛
&∗∗∗∗ &∗∗∗ &&∗ + &"∗ )&∗ + &#∗ (2) − 1)&$∗
&∗∗ &∗ (2&) − 2) + 1)&$∗ (& + 2)" − 3) + 1)&$∗ 0
(2 − ))&∗ − &#∗ (3& − 2&) + 2)" − 3) + 1)&$∗ 0 0 0
(1 − ) + &)&∗ − &#∗ ++&"∗ (2& − 2&) + 2) − 1)&$∗ 0 0 0
(2& − 2) + 1)&$∗ 0 0 0 0

⎠

⎟⎟
⎟
⎞

 

 

we have that the action of AJK î+2[[ (:, q)ï on the subspace ‹∑3'8( :'∇'› is given by 
‹∑3'8( :'

∗∇'›, where 

 
:(
∗ = %5:( − q(q − 2)(4q − 2: − 2):3%

+',

:+
∗ = %5:+ − dq(q − 2)(2q − 1) + :(2q

+ − 4q + 3)e:3%
+',

:3
∗ = %[:3.

 

We are interested only in the cases with :3 ≠ 0. Now we obtain the following cases: 
    1.  For q(q − 2)(2q − 1) + :(2q+ − 4q + 3) ≠ 0 : 
        (a) If 2q(q − 2)(2q − : − 1):+ = :(dq(q − 2)(2q − 1) +

:(2q+ − 4q + 3)e, then by choosing % = (

d&'
2  and ' = &$7$

K(K$+)(+K$()"&(+K$$5K"3)
, we 

have the representative ⟨∇3⟩; 
        (b) If 2q(q − 2)(2q − : − 1):+ ≠ :(dq(q − 2)(2q − 1) +

:(2q+ − 4q + 3)e, then by choosing 
 

% =
&!e&(+K$$5K"3)"K(K$+)(+K$()f"+&$K(K$+)(&$+K"()

K(K$+)(+K$()"&(+K$$5K"3)
  

 
and 
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' =
:+%

+

q(q − 2)(2q − 1) + :(2q+ − 4q + 3)
, 

 
we obtain the representative ⟨∇( + ∇3⟩. 

 From the above cases we have new parametric algebras +QY(q), +RY(q), +(2Y (q), 
+((
Y (q) (see Table A.5 in Appendix A). 

    2.  The condition q = 1, for : = (

+
dq + È−2 + 6q − 3q+e gives : = 1, 

that is +2[[ (1,1). The base of the second cohomology of this algebra spanned by 
elements:  

 
 ∇(= [Δ(5] − [Δ3(] − [Δ5(], ∇+= [Δ(3] + [Δ5(],		 
 

∇3= [Δ([] + [Δ+3] + [Δ+5] + [Δ3+] + [Δ5+] + [Δ[(]. 
 

Since  
 

 zX

⎝

⎜
⎜

⎛

0 0 :+ :( :3
0 0 :3 :3 0

−:( :3 0 0 0

:+ − :( :3 0 0 0

:3 0 0 0 0

⎠

⎟
⎟

⎞

z = 

 

 

⎝

⎜

⎜

⎛

:∗∗∗∗ :∗∗ :∗ + :+
∗ :∗ + :(

∗ :3
∗

:∗∗∗ :∗ :3
∗ :3

∗ 0

:∗ − :(
∗ :3

∗ 0 0 0

:∗ − :(
∗ + :+

∗ :3
∗ 0 0 0

:3
∗ 0 0 0 0

⎠

⎟

⎟

⎞

 

 
we have that the action of AJK î+2[[ (1,1)ï on the subspace ‹∑3'8( :'∇'› is given by 
‹∑3'8( :'

∗∇'›, where  
 

 :(
∗ = %5:(, :+

∗ = %5:+, :3
∗ = :3%

[. 

We are interested only in :3 ≠ 0, then we have the following cases:  
        (a) If :+ ≠ 0, then for % = &$

&'
, : = &!

&$
 we have the representative 

⟨:∇( + ∇+ + ∇3⟩. 
        (b) If :+ = 0, then also we have two cases:   
            i. If :( ≠ 0, then % = &!

&'
, and we have the representative ⟨∇( + ∇3⟩;  

            ii. If :( = 0, then % = (

d&'
2 , and we have the representative ⟨∇3⟩;  
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 Consequently, we have the following algebras from +2[[ (1,1): +2QY (1), +2RY (1), 
+(+
Y (:) (see Table A.1 in Appendix A). 

    3.  The condition q = 3

+
 gives : = 1 for : = (

+
dq + È−2 + 6q − 3q+e, that 

is +2[[ î1,
3

+
ï. So, the second cohomology space of +2[[ î1,

3

+
ï spanned by elements:  

 
 ∇(= [Δ(5] − [Δ3(] − [Δ5(], ∇+= [Δ(3] + [Δ5(], 

 
 ∇3= 2[Δ([] + [Δ+3] + 2[Δ+5] + [Δ3+] + [Δ5+]. 

 
Since  
 

 zX

⎝

⎜
⎜

⎛

0 0 :+ :( 2:3
0 0 :3 2:3 0

−:( :3 0 0 0

:+ − :( :3 0 0 0

0 0 0 0 0
⎠

⎟
⎟

⎞

z = 

 

 

⎝

⎜
⎜

⎛

:∗∗∗∗ :∗∗∗ :+
∗ + :∗ :(

∗ + 3:∗ 2:3
∗

:∗∗ 2:∗ :3
∗ 2:3

∗ 0

:∗ − :(
∗ :3

∗ 0 0 0

:+
∗ − :(

∗ + :∗ :3
∗ 0 0 0

0 0 0 0 0
⎠

⎟
⎟

⎞

 

 

we have that the action of AJK Í+2[[ î1,
3

+
ïÎ on the subspace ‹∑3'8( :'∇'› is given by 

‹∑3'8( :'
∗∇'›, where 

 

 :(
∗ = %5:( +

3

+
%3':3, :+

∗ = %5:+, :3
∗ = %[:3. 

Since :3 ≠ 0, and choosing ' = −
+7$&!
3&'

, we have the representatives ⟨∇3⟩ and 
⟨∇+ + ∇3⟩, depending on whether :+ = 0 or not. 

We have the following new 6-dimensional algebras constructed from +2[[ î1,
3

+
ï: 

+2Q
Y î

3

+
ï , +(3

Y  (see Table A.5 in Appendix A). 

5) Central extensions of ‘]gg îÏ,
^

c
ï. If q = (

+
 for : = (

+
dq − È−2 + 6q − 3q+e 

gives : = 0, that is +2[[ î0,
(

+
ï. So, the second cohomology space of +2[[ î0,

(

+
ï 

spanned by elements:  

 ∇(= [Δ(5] − [Δ3(] − [Δ5(], 
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 ∇+= [Δ(3] + [Δ5(], 

 
 ∇3= 2[Δ([] − 3[Δ+3] − 2[Δ+5] − 3[Δ3+] + [Δ5+] − 4[Δ[(]. 
 

Since  
 

 zX

⎝

⎜
⎜

⎛

0 0 :+ :( 2:3
0 0 −3:3 −2:3 0

−:( −3:3 0 0 0

:+ − :( :3 0 0 0

−4:3 0 0 0 0

⎠

⎟
⎟

⎞

z = 

 

 =

⎝

⎜

⎜

⎛

:∗∗∗∗ :∗∗ :+
∗ :(

∗ + :∗ 2:3
∗

:∗∗∗ 2:∗ −3:3
∗ −2:3

∗ 0

−:(
∗ + 3:∗ −3:3

∗ 0 0 0

:+
∗ − :(

∗ + :∗ :3
∗ 0 0 0

−4:3
∗ 0 0 0 0

⎠

⎟

⎟

⎞

 

 

we have that the action of AJK Í+2[[ î0,
(

+
ïÎ on the subspace ‹∑3'8( :'∇'› is given by 

‹∑3'8( :'
∗∇'›, where  

 
:(
∗ = %5:+ +

R

+
%3':3, :+

∗ = %5:( + 3%
3':3, :3

∗ = %[:3. 

We are interested in :3 ≠ 0, then we have the following cases: 
    1.  If 3:( − 2:+ = 0, then % = (

d&'
2  and ' = −

7&!
3&'
, we have the 

representative ⟨∇3⟩; 
    2.  If 3:( − 2:+ ≠ 0, then % = $3&!"+&$

+&'
, ' = −

7&!
3&'

 and we have the 
representative ⟨∇+ + ∇3⟩. 

We have the following new 6-dimensional algebras constructed from 
+2[
[ î0,

(

+
ï:		+(5

Y 	and	+([
Y  (see Table A.5 in Appendix A). 

6) Central extensions of Ì]ig . Let us use the following notations: 

 
 ∇(= [Δ+(], ∇+= [Δ([] + [Δ+5] + [Δ33] + [Δ5+] + [Δ[(]. 
 

The automorphism group of +2Y[  consists of invertible matrices of the form 
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 z =

⎝

⎜⎜

⎛

% 0 0 0 0

' %+ 0 0 0

L 2%' %3 0 0

l 2%L + '+ 3%+' %5 0

m 2%l + 2'L 3%+L + 3%'+ 4%3' %[⎠

⎟⎟

⎞
. 

 
Since  
 

zX

⎝

⎜
⎜

⎛

0 0 0 0 :+
:( 0 0 :+ 0

0 0 :+ 0 0

0 :+ 0 0 0

:+ 0 0 0 0

⎠

⎟
⎟

⎞

z =

⎝

⎜
⎜

⎛

:∗∗∗∗ :∗ :∗∗ :∗∗∗ :+
∗

:(
∗ + :∗ :∗∗ :∗∗∗ :+

∗ 0

:∗∗ :∗∗∗ :+
∗ 0 0

:∗∗∗ :+
∗ 0 0 0

:+
∗ 0 0 0 0

⎠

⎟
⎟

⎞

, 

 
we have that the action of AJKd+2Y[ e on the subspace ‹∑+'8( :'∇'› is given by 
‹∑+'8( :'

∗∇'›, where 
 

:(
∗ = %3:(, :+

∗ = %Y:+. 

We suppose that :+ ≠ 0, otherwise obtained algebra gives an algebra with 2-
dimensional annihilator. Therefore, consider the following cases: 

    1.  If :( = 0, then % = (

√&$3 , we have the representative ⟨∇+⟩;  

    2.  If :( ≠ 0, then % = Ó
&!
&$

'
, we have the representative ⟨∇( + ∇+⟩. 

Hence, we have the following new algebras: +(YY , +(ZY  (see Table A.5 in Appendix 
A). 
7) Central extensions of Ì]jg . Let us use the following notations:  

 
∇(= [Δ+(], ∇+= [Δ([] + 2[Δ++] + [Δ+5] + 3[Δ3(] + [Δ33] + [Δ5+] + [Δ[(]. 
 

The automorphism group of +2Z[  consists of invertible matrices of the form 
 

z' =

⎝

⎜⎜

⎛

(−1)/ 0 0 0 0

% 1 0 0 0

' (−1)/2% (−1)/ 0 0

L %+ + (−1)/2' 3% 1 0

K 2%' + (−1)/(% + 2L) (−1)/3%+ + 3' (−1)/4% (−1)/⎠

⎟⎟

⎞
, 

 
where t ∈ 1,2. Since  
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z'
X

⎝

⎜
⎜

⎛

0 0 0 0 :+
:( 2:+ 0 :+ 0

3:+ 0 :+ 0 0

0 :+ 0 0 0

:+ 0 0 0 0

⎠

⎟
⎟

⎞

z' =

⎝

⎜
⎜

⎛

:∗∗∗∗ :∗ :∗∗ :∗∗∗ :+
∗

:(
∗ + :∗ 2:+

∗ + :∗∗ :∗∗∗ :+
∗ 0

3:+
∗ :∗∗∗ :+

∗ 0 0

:∗∗∗ :+
∗ 0 0 0

:+
∗ 0 0 0 0

⎠

⎟
⎟

⎞

, 

 
we have that the action of AJKd+2Z[ e on the subspace ‹∑+'8( :'∇'› is given by 
‹∑+'8( :'

∗∇'›, where 
 

 :(
∗ = (−1)':( − 6%:+, :+

∗ = :+. 

We have only one non-trivial orbit with the representative ⟨∇+⟩, and get the 
algebra +(QY  (see Table A.5 in Appendix A). 

Summarizing results we have the second part of Theorem 3.2.7. 
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CONCLUSION  
 
In conclusion, the dissertation work has focused on two classical problems in 

the study of nonassociative algebras, specifically, the study of nonassociative algebras 
under a commutator and the classification of finitely dimensional nonassociative 
algebras.  

Firstly, a criterion was found for determining the Lie elements in a free Zinbiel 
algebra. This result is of particular importance as it allows for the identification of Lie 
elements in a free Zinbiel algebra, which is a fundamental step in understanding the 
structure and properties of these algebras. 

Secondly, a basis for special Tortkara algebras was constructed. This result 
provides a foundation for further study of these algebras and can be used to develop 
new techniques and methods. Additionally, it was shown that there exists an 
exceptional homomorphic image of a free special Tortkara algebra with three 
generators, and it was proved that any homomorphic image of a free special Tortkara 
algebra with two generators is special. 

Thirdly, it has been proved that there is no special identity with two generators. 
This result has implications for the study of special identities in special Tortkara 
algebras and can be used to future research in this area. 

Fourthly, an algebraic classification of nilpotent 4-dimensional assosymmetric 
algebras was constructed. This result provides a comprehensive understanding of the 
structure and properties of these algebras and can be used to guide further research in 
this area. Additionally, an algebraic classification of nilpotent 5- and 6-dimensional 
assosymmetric algebras with one generator was constructed. 

Finally, algorithms were provided with code written in Wolfram Mathematica 
to simplify the computational aspects of the classification problem of nilpotent 
algebras. The use of Wolfram Mathematica allowed for efficient and accurate 
computations, and the authors partially used the "solve" function, a symbolic solver 
built into Wolfram Mathematica, when working with a system of polynomial 
equations. This is the main function that takes up most of the compilation time. The 
codes written by the authors in other software, including Matlab and Python, gave the 
worst results in terms of running time and, in some cases, failed to provide any 
solutions. 

In summary, the results obtained in this dissertation have advanced our 
understanding of nonassociative algebras and have provided new techniques and 
methods. These results can be applied to further study of Zinbiel algebras under 
commutator and can be used in special courses on the theory of free and finite-
dimensional algebras. The work also highlights the importance of using appropriate 
software tools when working with symbolic nonlinear equations and the potential for 
improving the performance of these tools. Overall, this dissertation work has made a 
contribution to the field of nonassociative algebras and sets the stage for future research 
in this area. 
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APPENDIX A 
 
Table A.1 – The list of 4-dimensional nilpotent “pure” assosymmetric algebras. 
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Table A.1 – continued from previous page 
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Cohomology spaces of 4-dimensional one-generated assosymmetric 
algebras. All multiplication tables of four-dimensional one-generated nilpotent 
assosymmetric algebras is given in Table 2.  In the present table we collect all usefull 
information about Z+, B+ and H+ spaces for all four-dimensional one-generated 
nilpotent assosymmetric algebras that were counted via code in [41]. 
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Table A.2 – Cohomology spaces of 4-dimensional one-generated nilpotent  assosym- 
metric algebras 

 
Z+(+2(
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Z+(+2+
5 )  ⟨Δ((, Δ(+, Δ+(, Δ(3 − Δ++ − 2Δ3(⟩  

B+(+2+
5 )  ⟨Δ((, Δ+(, Δ(+ + Δ(3 − Δ++ − 2Δ3(⟩  

H+(+2+
5 )  ⟨[Δ(+]⟩  

Z+(+23
5 )  ⟨Δ((, Δ(+, Δ+(, Δ(3 − Δ++ − 2Δ3(⟩  

B+(+23
5 )  ⟨Δ((, Δ+(, Δ(3 − Δ++ − 2Δ3(⟩  

H+(+23
5 )  ⟨[Δ(+]⟩  

Z+(+25
5 (:)&\()  ⟨Δ((, Δ(+, Δ+(, (2 − :)Δ(3 + (:

+ − : + 1)Δ++ + (2: − 1)Δ3(⟩  

B+(+25
5 (:)&\() 

 ⟨Δ((, Δ(+ + :Δ+(, (2 − :)Δ(3 + (:+ − : + 1)Δ++ + (2: − 1)Δ3(⟩  

H+(+25
5 (:)&\()  ⟨[Δ(+]⟩  

Z+(+25
5 (1))  ⟨Δ((, Δ(+, Δ+(, Δ(3 + Δ++ + Δ3(, Δ(5 + Δ+3 + Δ3+ + Δ5(⟩  

B+(+25
5 (1))  ⟨Δ((, Δ(+ + Δ+(, Δ(3 + Δ++ + Δ3(⟩  

H+(+25
5 (1))  ⟨[Δ+(], [Δ(5] + [Δ+3] + [Δ3+] + [Δ5(]⟩  

Z+(+2[
5 )  ⟨Δ((, Δ(+, Δ+(, 2Δ(3 + Δ++ − Δ3(⟩  

B+(+2[
5 )  ⟨Δ((, Δ(+, −2Δ(3 + Δ+( − Δ++ + Δ3(⟩  

H+(+2[
5 )  ⟨[Δ+(]⟩ 

Z+(+2Y
5 )  ⟨Δ((, Δ(+, Δ+(, Δ(3 + Δ++ − Δ3(⟩  

B+(+2Y
5 )  ⟨Δ((, Δ(+ − Δ+(, −3Δ(3 + Δ+( − 3Δ++ + 3Δ3(⟩  

H+(+2Y
5 )  ⟨[Δ(3] + [Δ++] − [Δ3(]⟩  
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Table A.3 – The list of 5-dimensional nilpotent “pure” assosymmetric algebras 
 
 
+2(
[  

 

{({( = {+				{({+ = {5										{({3 = {[	

	

{+{( = {3			{+{+ = −{[							{3{( = −2{[ 
 
+2+
[ (:) 

{({( = {+						{({+ = {3							{({3 = (: − 2){[					{+{( = :	{3 	+ {5	 
{+{+ = (: − :+ − 1){[						{3{( = (1 − 2:){[ 

+23
[  {({( = {+						{({+ = {5							{({3 = {[					{+{( = {3	 		{5{( = {[ 

 
+25
[ (:) 

{({( = {+						{({+ = {5							{({3 = :{[					{({5 = {[ 
{+{( = {3						{3{( = −{[				{5{( = (: − 1)	{[ 

 
+25
[ (:, q) 

{({( = {+						{({+ = {5							{({3 = α{[																	{({5 = β{[	

{+{( = {3						{+{+ = {[							{3{( = (2 − β){[					{5{( = (α − β + 1){[ 

+23
[  {({( = {+						{({+ = {3						{({3 = {5					{({5 = {[						{+{( = {3		 

{+{+ = {5						{+{3 = {[						{3{( = {5						{3{+ = {[					{5{( = {[	

+23
[  {({( = {+						{({+ = {3						{({3 = {5						{({5 = {[						{+{( = {3 + {[ 

{+{+ = {5						{+{3 = {[						{3{( = {5						{3{+ = {[						{5{( = {[ 
 
Cohomology spaces of 5-dimensional one-generated assosymmetric 

algebras. All relevant information about coboundaries, cocycles and second 
cohomology spaces of five-dimensional one-generated nilpotent assosymmetric 
algebras were calculated by the code in [41] and given in the following table: 

 
Table A.4 – Cohomology spaces of 5-dimensional one-generated nilpotent assosym-
metric algebras 
 
Z"(2$!% ) ⟨Δ!!, Δ!", Δ"!, Δ!# + Δ'!, Δ"" + 2Δ#! + Δ'!Δ!' − Δ#! − Δ'!⟩ 
B"(2$!% ) ⟨Δ!!, Δ!", Δ"!, Δ!# − Δ"" − 2Δ#!⟩ 
H"(2$!% ) ⟨[Δ!#] + [Δ'!], [Δ!'] − [Δ#!] + [Δ'!]⟩ 
Z"(2$"% ()
≠ 1)) 6Δ!!, Δ!", Δ"!, Δ!# + (1 − ))Δ"" + (1 − 2))Δ'!,Δ!' − Δ"" − 2Δ'!, Δ"" + Δ#! + (2 − ))Δ'! 7 
B"(2$"% ()
≠ 1)) 

⟨Δ!!, Δ!", Δ"!, () − 2)Δ!# + () − )" − 1)Δ"" + (1 − 2))Δ#!⟩ 

H"(2$"% ()
≠ 1)) 

⟨[Δ!'] − [Δ""] − 2[Δ'!], [Δ""] + [Δ#!] + (2 − ))[Δ'!]⟩ 

Z"(2$"% (1)) ⟨Δ00, Δ0/, Δ/0, Δ01 − Δ40, Δ// + Δ10 + Δ40, Δ04 + Δ10 − Δ40, 	Δ05 − Δ/1 − Δ1/ + Δ50⟩ 
B"(2$"% (1)) ⟨Δ!!, Δ!", Δ"!, Δ!# + Δ"" + Δ#!⟩ 
H"(2$"% (1)) ⟨[Δ!#] − [Δ'!], [Δ!'] + [Δ#!] − [Δ'!], [Δ!%] − [Δ"#] − [Δ#"] + [Δ%!]⟩ 
Z"(2$#% ) ⟨Δ!!, Δ!", Δ"!, Δ!# + Δ'!, Δ!' − Δ#! − Δ'!, Δ"" + 2Δ#! + Δ'!⟩ 
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Table A.4 – continued from previous page 
 
B"(2$#% ) ⟨Δ!!, Δ!", Δ"!, Δ!# + Δ'!⟩ 
H"(2$#% ) ⟨[Δ!'] − [Δ#!] − [Δ'!], [Δ""] + 2[Δ#!] + [Δ'!]⟩ 
Z"(2$'% ())) ⟨Δ!!, Δ!", Δ"!, Δ!# + Δ!' − Δ#!, Δ!' − Δ#! − Δ'!, Δ!' + Δ"" + Δ#!⟩ 
B"(2$'% ())) ⟨Δ!!, Δ!", Δ"!, )Δ!# + Δ!' − Δ#! + () − 1)Δ'!⟩ 
H"(2$'% ())) ⟨[Δ!#] + [Δ'!], )[Δ!#] + 2[Δ!'] + [Δ""] + () − 1)[Δ'!]⟩ 
Z/(2655 (', 3)) ⟨Δ!!, Δ!", Δ"!, Δ!# + Δ!' − Δ#!, Δ!' − Δ#! − Δ'!, Δ!' + Δ"" + Δ#!⟩ 

B"(2$%% (), 8)) ⟨Δ!!, Δ!", Δ"!, )Δ!# + 8Δ!' + Δ"" + (2 − 8)Δ#! + () − 8 + 1)Δ'!⟩ 
H"(2$%% (), 8)) ⟨[Δ!#] + [Δ!'] − [Δ#!], [Δ!'] − [Δ#!] − [Δ'!]⟩ 
 4 ≠ 7

8 67 ± 9−: + ;7 − <78= 
Z/(2655 (', 3)) 

k
Δ!!, Δ!", Δ"!, Δ!# − Δ$! − Δ#!, Δ!$ + Δ#!, (2p − 1)Δ!% +
+(2p(r − 1) + 1)Δ"$ + (r + 2p" − 3p + 1)Δ"# + (−2rp + 3r + 2p" − 3p + 1)Δ$" +
+(−2rp + 2r + 2p − 1)Δ#" + (2r − 2p + 1)Δ%!, Δ"" + 2Δ$! + Δ#!

t 

B/(2655 (', 3)) ⟨Δ!!, Δ!", Δ"!, rΔ!$ + pΔ!# + Δ"" + (2 − p)Δ$! + (r − p + 1)Δ#!⟩ 
H/(2655 (', 3))  3[Δ#&] − [Δ$#] − [Δ&#], [Δ#$] + [Δ&#], (2) − 1)[Δ#'] + (2)(& − 1) + 1)[Δ"$] + (& + 2)

" − 3) + 1)[Δ"&]
+(−2&) + 3& + 2)" − 3) + 1)[Δ$"] + (−2&) + 2& + 2) − 1)[Δ&"] + (2& − 2) + 1)[Δ'#]

8  

' = 0
/ 63 ± 9−2 + 63 − 33/= and (', 3) ≠ 60, 0/=  

Z/(2655 (0,
1
2)) 

w
Δ!!, Δ!", Δ"!, Δ!$ + Δ#!, Δ!# − Δ$! − Δ#!,
2Δ!% − 3Δ"$ − 2Δ"# − 3Δ$" + Δ#" − 4Δ%!, Δ"" + 2Δ$! + Δ#!

y 

B/(2655 (0,
1
2)) 

⟨Δ!!, Δ!", Δ"!, Δ!# + 2Δ"" + 3Δ$! + Δ#!⟩ 

H/(2655 (0,
1
2)) 

⟨[Δ!#] − [Δ$!] − [Δ#!], [Δ!$] + [Δ#!], 2[Δ!%] − 3[Δ"$] − 2[Δ"#] − 3[Δ$"] + [Δ#"] − 4[Δ%!]⟩ 

Z"(2$&% )) 6Δ!!, Δ!", Δ"!, Δ!# + Δ"" + Δ#!, Δ!' + Δ"# + Δ#" + Δ'!,Δ!% + Δ"' + Δ## + Δ'" + Δ%! 7 
B"(2$&% )) ⟨Δ!!, Δ!" + Δ"!, Δ!# + Δ"" + Δ#!, Δ!' + Δ"# + Δ#" + Δ'!⟩ 
H"(2$&% )) ⟨[Δ"!], [Δ!%] + [Δ"'] + [Δ##] + [Δ'"] + [Δ%!]⟩ 
Z"(2$(% ) 6Δ!!, Δ!", Δ"!, Δ!# + Δ"" + Δ#!, Δ!' + Δ"# + Δ#" + Δ'!,Δ!% + 2Δ"" + Δ"' + 3Δ#! + Δ## + Δ'" + Δ%! 7 
B"(2$(% ) ⟨Δ!!, Δ!" + Δ"!, Δ!# + Δ"" + Δ#!, Δ!' + Δ"! + Δ"# + Δ#" + Δ'!⟩ 
H"(2$(% ) ⟨[Δ"!], [Δ!%] + 2[Δ""] + [Δ"'] + 3[Δ#!] + [Δ##] + [Δ'"] + [Δ%!]⟩ 

 
 
Table A.5 – The list of 6-dimensional nilpotent “pure” assosymmetric algebras 
 

2$!&  :!:! = :" :!:" = :' :!:# = :% 

:!:' = :& :":! = :# 	:#:! = −:& 

:':! = :% − :&  
 

2$"& ()) :!:! = :" :!:" = :' :!:# = :% 

:!:' = α:& :":! = :# :":" = :& 

:#:! = (2 − )):& :':! = :% − () − 1):&  
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Table A.5 – continued from previous page 
 

2$#& (α, β) :!:! = :" :!:" = :' :!:# = α:% + β:& 

:!:' = :% :":! = :# :":" = :& 

:#:! = −:% + 2:& :':! = () − 1):% + (8 + 1):&  
 

2$'&  :!:! = :" :!:" = :# :!:# = :' 

:!:' = :& :":! = :# + :& :":" = :' 

:":# = :% :#:! = :' :#:" = :% 

:':! = :%   
 

2$%& ()) :!:! = :" :!:" = :# :!:# = −:% + ):& 

:!:' = :& :!:% = :& :":! = :# + :' 

:":" = −:% :":# = −:& :#:! = −:% + :& 

:#:" = −:& :':! = −() + 1):& :%:! = :& 
 

2$&&  :!:! = :" :!:" = :# :!:# = −:% + :& 

:!:% = :& :":! = :# + :' :":" = −:% 

:":# = −:& :#:! = −:% :#:" = −:& 

:%:! = :& :':! = −:&  
 

2$(&  :!:! = :" :!:" = :# :!:# = −:% 

:!:% = :& :":! = :# + :' :":" = −:% 

:":# = −:& :#:! = −:% :#:" = −:& 

:%:! = :&   
 

2$)& (8) ) = 1
2 ?8 + @(−2 + 68 − 38

")B 

:!:! = :" :!:" = :' :!:# = ):% 

:!:' = 8:% :!:% = (2	8 − 1):& :":! = :# 

:":" = :% :":# = (2)8 − 2 + 1):&  

:":' = () + 28" − 38 + 1):& :#:! = (2 − 8):% 
 

:#:" = (() − 8)(3	 − 28) + 1):& :':! =	 () − 8 + 1):% 
 

:':" = (	2	) − 2	)8 + 2	8 − 1):& :%:! =	 (2	) − 2	8 + 1):& 
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Table A.5 – continued from previous page 
 

2$*& (8) ) = 1
2 ?8 + @(−2 + 68 − 38

")B , 8 ≠ 3
2 

:!:! = :" :!:" = :' :!:# = ):% 

:!:' = 8:% + :& :!:% = (2	8 − 1):& :":! = :# 

:":" = :% :":# = (2)8 − 2 + 1):&  

:":' = () + 28" − 38 + 1):& :#:! = (2 − 8):% − :& 
 

:#:" = (() − 8)(3	 − 28) + 1):& :':! = () − 8 + 1):% − :& 
 

:':" = (	2	) − 2	)8 + 2	8 − 1):& :%:! = (2	) − 2	8 + 1):& 
  

2!$& (8) ) = 1
2 ?8 − @(−2 + 68 − 38

")B , 8 ≠ 1
2 

:!:! = :" :!:" = :' :!:# = ):% 

:!:' = 8:% :!:% = (2	8 − 1):& :":! = :# 

:":" = :% :":# = (2)8 − 2 + 1):&  

:":' = () + 28" − 38 + 1):& :#:! = (2 − 8):% 
 

:#:" = (() − 8)(3	 − 28) + 1):& :':! =	 () − 8 + 1):% 
 

:':" = (	2	) − 2	)8 + 2	8 − 1):& :%:! = (2	) − 2	8 + 1):& 
  

2!!& (8) ) = 1
2 ?8 − @(−2 + 68 − 38

")B , 8 ≠ 1
2 

:!:! = :" :!:" = :' :!:# = ):% 

:!:' = 8:% + :& :!:% = (2	8 − 1):& :":! = :# 

:":" = :% :":# = (2)8 − 2 + 1):&  

:":' = () + 28" − 38 + 1):& :#:! = (2 − 8):% − :& 
 

:#:" = (() − 8)(3	 − 28) + 1):& :':! = () − 8 + 1):% − :& 
 

:':" = (	2	) − 2	)8 + 2	8 − 1):& :%:! = (2	) − 2	8 + 1):& 
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Table A.5 – continued from previous page 
 

2!"&  :!:! = :" :!:" = :' :!:# =  :% +  :& 

:!:' = :% + 2):& :!:% = :& :":! = :# 

:":" = :% + ):& :":# = :& :":' = :& 

:#:! = :% :#:" = :& :':! = :% + (1 − )):& 

:':" = :& :%:! = :&  
 

2!#&  :!:! = :" :!:" = :' :!:# =  :% +  :& 

:!:' =
3
2 :% :!:% = 2:& :":! = :# 

:":" = :% :":# = :& :":' = 2:& 

:#:! =
1
2 :% :#:" = :& :':! = :& 

:':" = :&   
 

2!'&  :!:! = :" :!:" = :' :!:' =   12 :% 

:!:% = 2:& :":! = :# :":" = :% 

:":# = −3:& :":' = −2:& :#:! =
3
2 :% 

:#:" = −3:& 	 :':! =
1
2 :% :':" = :& 

:%:! = −4:&   
 

2!%&  :!:! = :" :!:" = :' :!:# =	:& 

:!:' =
1
2 :% :!:% = 2:& :":! = :# 

:":" = :% :":# = −3:& :":' = −2:& 

:#:! =
3
2 :% :#:" = −3:& :':! = !

" :% +	:&   

:':" = :& 	 :%:! = −4:& :%:! = :& 
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Table A.5 – continued from previous page 
 

2!&&  :!:! = :" :!:" = :# :!:# = :' 

:!:' = :% :!:% = :& :":! = :# 

:":" = :' :":# = :% :":' = :& 

:#:! = :' :#:" = :% :#:# = :& 

:':! = :% :':" = :& :%:! = :& 
 

2!(&  :!:! = :" :!:" = :# :!:# = :' 

:!:' = :% :!:% = :& :":! = :# + :&	

:":" = :' :":# = :% :":' = :&	

:#:! = :' :#:" = :% :#:# = :& 

:':! = :% :':" = :& :%:! = :& 
 

2!)&  :!:! = :" :!:" = :# :!:# = :' 

:!:' = :% :!:% = :& :":! = :# + :%	

:":" = :' + 2:& :":# = :% :":' = :& 

:#:! = :' + 3:& :#:" = :% :#:# = :& 

:':! = :% :':" = :& :%:! = :& 
 

 


